Abstract The Hawai‘i Climate Data Portal (HCDP) is designed to facilitate streamlined access to a wide variety of climate data and information for the State of Hawai‘i. Prior to the development of the HCDP, gridded climate products and point datasets were fragmented, outdated, not easily accessible, and not available in near–real time. To address these limitations, HCDP researchers developed the cyberinfrastructure necessary to 1) operationalize data acquisition and product production in a near-real-time environment and 2) make data and products easily accessible to a wide range of users. The HCDP hosts several high-resolution (250 m) gridded products including monthly rainfall and daily temperature (maximum, minimum, and mean), station data, and gridded future projections of rainfall and temperature. HCDP users can visualize both gridded and point data, create and download custom maps, and query station and gridded data for export with relative ease. The “virtual station” feature allows users to create a climate time series at any grid point. The primary objective of the HCDP is to promote sharing and access to data and information to streamline research activities, improve awareness, and promote the development of tools and resources that can help to build adaptive capacities. The HCDP products have the potential to serve a wide range of users including researchers, resource managers, city planners, engineers, teachers, students, civil society organizations, and the broader community. 
                        more » 
                        « less   
                    
                            
                            Optimizing Automated Kriging to Improve Spatial Interpolation of Monthly Rainfall over Complex Terrain
                        
                    
    
            Abstract Gridded monthly rainfall estimates can be used for a number of research applications, including hydrologic modeling and weather forecasting. Automated interpolation algorithms, such as the “autoKrige” function in R, can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an optimized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation; 3) detecting erroneous maps using a machine learning algorithm; and 4) selecting the most appropriate parameterization scheme for fitting the model used in the interpolation. Results of this effort include a 30-yr (1990–2019), high-resolution (250-m) gridded monthly rainfall time series for the state of Hawai‘i. Leave-one-out cross validation (LOOCV) is performed using an extensive network of 622 observation stations. LOOCV results are in good agreement with observations (R2= 0.78; MAE = 55 mm month−1; 1.4%); however, predictions can underestimate high rainfall observations (bias = 34 mm month−1; −1%) due to a well-known smoothing effect that occurs with kriging. This research highlights the fact that validation statistics should not be the sole source of error assessment and that default parameterizations for automated interpolation may need to be modified to produce realistic gridded rainfall surfaces. Data products can be accessed through the Hawai‘i Data Climate Portal (HCDP;http://www.hawaii.edu/climate-data-portal). Significance StatementA new method is developed to map rainfall in Hawai‘i using an optimized geostatistical kriging approach. A machine learning technique is used to detect erroneous rainfall maps and several conditions are implemented to select the optimal parameterization scheme for fitting the model used in the kriging interpolation. A key finding is that optimization of the interpolation approach is necessary because maps may validate well but have unrealistic spatial patterns. This approach demonstrates how, with a moderate amount of data, a low-level machine learning algorithm can be trained to evaluate and classify an unrealistic map output. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1920304
- PAR ID:
- 10366870
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Hydrometeorology
- Volume:
- 23
- Issue:
- 4
- ISSN:
- 1525-755X
- Page Range / eLocation ID:
- p. 561-572
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract High temporal and spatial resolution precipitation datasets are essential for hydrological and flood modeling to assist water resource management and emergency responses, particularly for small watersheds, such as those in Hawai‘i in the United States. Unfortunately, fine temporal (subdaily) and spatial (<1 km) resolutions of rainfall datasets are not always readily available for applications. Radar provides indirect measurements of the rain rate over a large spatial extent with a reasonable temporal resolution, while rain gauges provide “ground truth.” There are potential advantages to combining the two, which have not been fully explored in tropical islands. In this study, we applied kriging with external drift (KED) to integrate hourly gauge and radar rainfall into a 250 m × 250 m gridded dataset for the tropical island of O‘ahu. The results were validated with leave-one-out cross validation for 18 severe storm events, including five different storm types (e.g., tropical cyclone, cold front, upper-level trough, kona low, and a mix of upper-level trough and kona low), and different rainfall structures (e.g., stratiform and convective). KED-merged rainfall estimates outperformed both the radar-only and gauge-only datasets by 1) reducing the error from radar rainfall and 2) improving the underestimation issues from gauge rainfall, especially during convective rainfall. We confirmed the KED method can be used to merge radar with gauge data to generate reliable rainfall estimates, particularly for storm events, on mountainous tropical islands. In addition, KED rainfall estimates were consistently more accurate in depicting spatial distribution and maximum rainfall value within various storm types and rainfall structures. Significance StatementThe results of this study show the effectiveness of utilizing kriging with external drift (KED) in merging gauge and radar rainfall data to produce highly accurate, reliable rainfall estimates in mountainous tropical regions, such as O‘ahu. The validated KED dataset, with its high temporal and spatial resolutions, offers a valuable resource for various types of rainfall-related research, particularly for extreme weather response and rainfall intensity analyses in Hawai’i. Our findings improve the accuracy of rainfall estimates and contribute to a deeper understanding of the performance of various rainfall estimation methods under different storm types and rainfall structures in a mountainous tropical setting.more » « less
- 
            Abstract For 20 years, Molecule of the Month articles have highlighted the functional stories of 3D structures found in the Protein Data Bank (PDB). The PDB is the primary archive of atomic structures of biological molecules, currently providing open access to more than 150,000 structures studied by researchers around the world. The wealth of knowledge embodied in this resource is remarkable, with structures that allow exploration of nearly any biomolecular topic, including the basic science of genetic mechanisms, mechanisms of photosynthesis and bioenergetics, and central biomedical topics like cancer therapy and the fight against infectious disease. The central motivation behind the Molecule of the Month is to provide a user‐friendly introduction to this rich body of data, charting a path for users to get started with finding and exploring the many available structures. The Molecule of the Month and related materials are updated regularly at the education portal PDB‐101 (http://pdb101.rcsb.org/), offering an ongoing resource for molecular biology educators and students around the world.more » « less
- 
            Abstract The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB‐designated Archive Keeper. Annually, RCSB PDB serves tens of thousands of three‐dimensional (3D) macromolecular structure data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro‐electron diffraction) from all inhabited continents. RCSB PDB makes PDB data available from its research‐focusedRCSB.orgweb portal at no charge and without usage restrictions to millions of PDB data consumers working in every nation and territory worldwide. In addition, RCSB PDB operates an outreach and educationPDB101.RCSB.orgweb portal that was used by more than 800,000 educators, students, and members of the public during calendar year 2020. This invited Tools Issue contribution describes (i) how the archive is growing and evolving as new experimental methods generate ever larger and more complex biomolecular structures; (ii) the importance of data standards and data remediation in effective management of the archive and facile integration with more than 50 external data resources; and (iii) new tools and features for 3D structure analysis and visualization made available during the past yearviatheRCSB.orgweb portal.more » « less
- 
            Abstract Conservation of migratory species exhibiting wide‐ranging and multidimensional behaviors is challenged by management efforts that only utilize horizontal movements or produce static spatial–temporal products. For the deep‐diving, critically endangered eastern Pacific leatherback turtle, tools that predict where turtles have high risks of fisheries interactions are urgently needed to prevent further population decline. We incorporated horizontal–vertical movement model results with spatial–temporal kernel density estimates and threat data (gear‐specific fishing) to develop monthly maps of spatial risk. Specifically, we applied multistate hidden Markov models to a biotelemetry data set (n = 28 leatherback tracks, 2004–2007). Tracks with dive information were used to characterize turtle behavior as belonging to 1 of 3 states (transiting, residential with mixed diving, and residential with deep diving). Recent fishing effort data from Global Fishing Watch were integrated with predicted behaviors and monthly space‐use estimates to create maps of relative risk of turtle–fisheries interactions. Drifting (pelagic) longline fishing gear had the highest average monthly fishing effort in the study region, and risk indices showed this gear to also have the greatest potential for high‐risk interactions with turtles in a residential, deep‐diving behavioral state. Monthly relative risk surfaces for all gears and behaviors were added to South Pacific TurtleWatch (SPTW) (https://www.upwell.org/sptw), a dynamic management tool for this leatherback population. These modifications will refine SPTW's capability to provide important predictions of potential high‐risk bycatch areas for turtles undertaking specific behaviors. Our results demonstrate how multidimensional movement data, spatial–temporal density estimates, and threat data can be used to create a unique conservation tool. These methods serve as a framework for incorporating behavior into similar tools for other aquatic, aerial, and terrestrial taxa with multidimensional movement behaviors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
