skip to main content


Title: Pulsar observations at low frequencies: applications to pulsar timing and solar wind models
ABSTRACT

Efforts are underway to use high-precision timing of pulsars in order to detect low-frequency gravitational waves. A limit to this technique is the timing noise generated by dispersion in the plasma along the line of sight to the pulsar, including the solar wind. The effects due to the solar wind vary with time, influenced by the change in solar activity on different time-scales, ranging up to ∼11 yr for a solar cycle. The solar wind contribution depends strongly on the angle between the pulsar line of sight and the solar disc, and is a dominant effect at small separations. Although solar wind models to mitigate these effects do exist, they do not account for all the effects of the solar wind and its temporal changes. Since low-frequency pulsar observations are most sensitive to these dispersive delays, they are most suited to test the efficacy of these models and identify alternative approaches. Here, we investigate the efficacy of some solar wind models commonly used in pulsar timing using long-term, high-cadence data on six pulsars taken with the Long Wavelength Array, and compare them with an operational solar wind model. Our results show that stationary models of the solar wind correction are insufficient to achieve the timing noise desired by pulsar timing experiments, and we need to use non-stationary models, which are informed by other solar wind observations, to obtain accurate timing residuals.

 
more » « less
Award ID(s):
2020265 1835400
NSF-PAR ID:
10363164
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3937-3950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    In this paper, we describe the International Pulsar Timing Array second data release, which includes recent pulsar timing data obtained by three regional consortia: the European Pulsar Timing Array, the North American Nanohertz Observatory for Gravitational Waves, and the Parkes Pulsar Timing Array. We analyse and where possible combine high-precision timing data for 65 millisecond pulsars which are regularly observed by these groups. A basic noise analysis, including the processes which are both correlated and uncorrelated in time, provides noise models and timing ephemerides for the pulsars. We find that the timing precisions of pulsars are generally improved compared to the previous data release, mainly due to the addition of new data in the combination. The main purpose of this work is to create the most up-to-date IPTA data release. These data are publicly available for searches for low-frequency gravitational waves and other pulsar science.

     
    more » « less
  2. ABSTRACT

    The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit.

     
    more » « less
  3. ABSTRACT

    We present the first 2.5 yr of data from the MeerKAT Pulsar Timing Array (MPTA), part of MeerTime, a MeerKAT Large Survey Project. The MPTA aims to precisely measure pulse arrival times from an ensemble of 88 pulsars visible from the Southern hemisphere, with the goal of contributing to the search, detection, and study of nanohertz-frequency gravitational waves as part of the International Pulsar Timing Array. This project makes use of the MeerKAT telescope and operates with a typical observing cadence of 2 weeks using the L-band receiver that records data from 856 to 1712 MHz. We provide a comprehensive description of the observing system, software, and pipelines used and developed for the MeerTime project. The data products made available as part of this data release are from the 78 pulsars that had at least 30 observations between the start of the MeerTime programme in February 2019 and October 2021. These include both sub-banded and band-averaged arrival times and the initial timing ephemerides, noise models, and the frequency-dependent standard templates (portraits) used to derive pulse arrival times. After accounting for detected noise processes in the data, the frequency-averaged residuals of 67 of the pulsars achieved a root-mean-square residual precision of $\lt 1 \, \mu \rm {s}$. We also present a novel recovery of the clock correction waveform solely from pulsar timing residuals and an exploration into preliminary findings of interest to the international pulsar timing community. The arrival times, standards, and full Stokes parameter-calibrated pulsar timing archives are publicly available.

     
    more » « less
  4. Abstract

    Although neutron star–black hole binaries have been identified through mergers detected in gravitational waves, a pulsar–black hole binary has yet to be detected. While short-period binaries are detectable due to a clear signal in the pulsar’s timing residuals, effects from a long-period binary could be masked by other timing effects, allowing them to go undetected. In particular, a long-period binary measured over a small subset of its orbital period could manifest via time derivatives of the spin frequency incompatible with isolated pulsar properties. We assess the possibility of pulsars having unknown companions in long-period binaries and put constraints on the range of binary properties that may remain undetected in current data, but that may be detectable with further observations. We find that for 35% of canonical pulsars with published higher-order derivatives, the precision of measurements is not enough to confidently reject binarity (period ≳2 kyr), and that a black hole binary companion could not be ruled out for a sample of pulsars without published constraints if the period is >1 kyr. While we find no convincing cases in the literature, we put more stringent limits on orbital period and longitude of periastron for the few pulsars with published higher-order frequency derivatives (n≥ 3). We discuss the detectability of candidates and find that a sample pulsar in a 100 yr orbit could be detectable within 5–10 yr.

     
    more » « less
  5. ABSTRACT Using the first station of the Long Wavelength Array (LWA1), we examine polarized pulsar emission between 25 and 88 MHz. Polarized light from pulsars undergoes Faraday rotation as it passes through the magnetized interstellar medium. Observations from low-frequency telescopes are ideal for obtaining precise rotation measures (RMs) because the effect of Faraday rotation is proportional to the square of the observing wavelength. With these RMs, we obtained polarized pulse profiles to see how polarization changes in the 25–88 MHz range. The RMs were also used to derive values for the electron-density-weighted average Galactic magnetic field along the line of sight. We present RMs and polarization profiles of 15 pulsars acquired using data from LWA1. These results provide new insight into low-frequency polarization characteristics and pulsar emission heights, and complement measurements at higher frequencies. 
    more » « less