Abstract We present timing solutions for 21 pulsars discovered in 350 MHz surveys using the Green Bank Telescope (GBT). All were discovered in the Green Bank North Celestial Cap pulsar survey, with the exception of PSR J0957−0619, which was found in the GBT 350 MHz Drift-scan pulsar survey. The majority of our timing observations were made with the GBT at 820 MHz. With a spin period of 37 ms and a 528 days orbit, PSR J0032+6946 joins a small group of five other mildly recycled wide binary pulsars, for which the duration of recycling through accretion is limited by the length of the companion’s giant phase. PSRs J0141+6303 and J1327+3423 are new disrupted recycled pulsars. We incorporate Arecibo observations from the NANOGrav pulsar timing array into our analysis of the latter. We also observed PSR J1327+3423 with the Long Wavelength Array, and our data suggest a frequency-dependent dispersion measure. PSR J0957−0619 was discovered as a rotating radio transient, but is a nulling pulsar at 820 MHz. PSR J1239+3239 is a new millisecond pulsar (MSP) in a 4 days orbit with a low-mass companion. Four of our pulsars already have published timing solutions, which we update in this work: the recycled wide binary PSR J0214+5222, the noneclipsing black widow PSR J0636+5128, the disrupted recycled pulsar J1434+7257, and the eclipsing binary MSP J1816+4510, which is in an 8.7 hr orbit with a redback-mass companion.
more »
« less
Algorithmic Pulsar Timer for Binaries
Abstract Pulsar timing is a powerful tool that, by accounting for every rotation of a pulsar, precisely measures the spin frequency, spin frequency derivatives, astrometric position, binary parameters when applicable, properties of the interstellar medium, and potentially general relativistic effects. Typically, this process demands fairly stringent scheduling requirements for monitoring observations as well as deep domain knowledge to “phase connect” the timing data. We present an algorithm that automates the pulsar-timing process for binary pulsars, whose timing solutions have an additional level of complexity, although the algorithm works for isolated pulsars as well. Using the statisticalF-test and the quadratic dependence of the reducedχ2near a minimum, the global rotation count of a pulsar can be determined efficiently and systematically. We have used our algorithm to establish timing solutions for two newly discovered binary pulsars, PSRs J1748−2446aq and J1748−2446at, in the globular cluster Terzan 5, using ∼70 Green Bank Telescope observations from the last 13 yr.
more »
« less
- Award ID(s):
- 2020265
- PAR ID:
- 10496587
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 964
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 128
- Size(s):
- Article No. 128
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although neutron star–black hole binaries have been identified through mergers detected in gravitational waves, a pulsar–black hole binary has yet to be detected. While short-period binaries are detectable due to a clear signal in the pulsar’s timing residuals, effects from a long-period binary could be masked by other timing effects, allowing them to go undetected. In particular, a long-period binary measured over a small subset of its orbital period could manifest via time derivatives of the spin frequency incompatible with isolated pulsar properties. We assess the possibility of pulsars having unknown companions in long-period binaries and put constraints on the range of binary properties that may remain undetected in current data, but that may be detectable with further observations. We find that for 35% of canonical pulsars with published higher-order derivatives, the precision of measurements is not enough to confidently reject binarity (period ≳2 kyr), and that a black hole binary companion could not be ruled out for a sample of pulsars without published constraints if the period is >1 kyr. While we find no convincing cases in the literature, we put more stringent limits on orbital period and longitude of periastron for the few pulsars with published higher-order frequency derivatives (n≥ 3). We discuss the detectability of candidates and find that a sample pulsar in a 100 yr orbit could be detectable within 5–10 yr.more » « less
-
Abstract We present a census of 100 pulsars, the largest below 100 MHz, including 94 normal pulsars and six millisecond pulsars, with the Long Wavelength Array (LWA). Pulse profiles are detected across a range of frequencies from 26–88 MHz, including new narrowband profiles facilitating profile evolution studies, and breaks in pulsar spectra at low frequencies. We report mean flux density, spectral index, curvature, and low-frequency turnover-frequency measurements for 97 pulsars, including new measurements for 61 sources. Multifrequency profile widths are presented for all pulsars, including component spacing for 27 pulsars with two components. Polarized emission is detected from 27 of the sources (the largest sample at these frequencies) in multiple frequency bands, with one new detection. We also provide new timing solutions for five recently discovered pulsars. Low-frequency observations with the LWA are especially sensitive to propagation effects arising in the interstellar medium. We have made the most sensitive measurements of pulsar dispersion measures (DMs) and rotation measures, with median uncertainties of 2.9 × 10−4pc cm−3and 0.01 rad m−2, respectively, and can track their variations over almost a decade, along with other frequency-dependent effects. This allows for stringent limits on average magnetic fields, with no variations detected above ∼20 nG. Finally, the census yields some interesting phenomena in individual sources, including the detection of frequency- and time-dependent DM variations in B2217+47, and the detection of highly circularly polarized emission from J0051+0423.more » « less
-
Abstract Pulsar timing is a process of iteratively fitting pulse arrival times to constrain the spindown, astrometric, and possibly binary parameters of a pulsar, by enforcing integer numbers of pulsar rotations between the arrival times. Phase connection is the process of unambiguously determining those rotation numbers between the times of arrival while determining a pulsar timing solution. Pulsar timing currently requires a manual process of step-by-step phase connection performed by individuals. In an effort to quantify and streamline this process, we created the Algorithmic Pulsar Timer (APT), an algorithm that can accurately phase connect and time isolate pulsars. Using the statistical F-test and knowledge of parameter uncertainties and covariances, the algorithm decides what new data to include in a fit, when to add additional timing parameters, and which model to attempt in subsequent iterations. Using these tools, the algorithm can phase-connect timing data that previously required substantial manual effort. We tested the algorithm on 100 simulated systems, with a 99% success rate. APT combines statistical tests and techniques with a logical decision-making process, very similar to the manual one used by pulsar astronomers for decades, and some computational brute force, to automate the often tricky process of isolated pulsar phase connection, setting the foundation for automated fitting of binary pulsar systems.more » « less
-
Abstract We present timing solutions for 12 pulsars discovered in the Green Bank North Celestial Cap 350 MHz pulsar survey, including six millisecond pulsars (MSPs), a double neutron star (DNS) system, and a pulsar orbiting a massive white dwarf companion. Timing solutions presented here include 350 and 820 MHz Green Bank Telescope data from initial confirmation and follow-up, as well as a dedicated timing campaign spanning 1 ryr PSR J1122−3546 is an isolated MSP, PSRs J1221−0633 and J1317−0157 are MSPs in black widow systems and regularly exhibit eclipses, and PSRs J2022+2534 and J2039−3616 are MSPs that can be timed with high precision and have been included in pulsar timing array experiments seeking to detect low-frequency gravitational waves. PSRs J1221−0633 and J2039−3616 have Fermi Large Area Telescope gamma-ray counterparts and also exhibit significant gamma-ray pulsations. We measure proper motions for three of the MSPs in this sample and estimate their space velocities, which are typical compared to those of other MSPs. We have detected the advance of periastron for PSR J1018−1523 and therefore measure the total mass of the DNS system,mtot= 2.3 ± 0.3M⊙. Long-term pulsar timing with data spanning more than 1 yr is critical for classifying recycled pulsars, carrying out detailed astrometry studies, and shedding light on the wealth of information in these systems post-discovery.more » « less
An official website of the United States government
