skip to main content


Title: Excited‐State Copper Catalysis for the Synthesis of Heterocycles
Abstract

Heterocycles are one of the largest groups of organic moieties with significant medicinal, chemical, and industrial applications. Herein, we report the discovery and development of visible‐light‐induced, synergistic excited‐state copper catalysis using a combination of Cu(IPr)I as a catalyst andrac‐BINAP as a ligand, which produces more than 10 distinct classes of heterocycles. The reaction tolerates a broad array of functional groups and complex molecular scaffolds, including derivatives of peptides, natural products, and marketed drugs. Preliminary mechanistic investigation suggests in situ generations of [Cu(BINAP)2]+and [Cu(IPr)2]+catalysts that work cooperatively under visible‐light irradiation to facilitate catalytic carbo‐aroylation of unactivated alkenes, affording a wide range of useful heterocycles.

 
more » « less
Award ID(s):
1848463
NSF-PAR ID:
10363172
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
4
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Heterocycles are one of the largest groups of organic moieties with significant medicinal, chemical, and industrial applications. Herein, we report the discovery and development of visible‐light‐induced, synergistic excited‐state copper catalysis using a combination of Cu(IPr)I as a catalyst andrac‐BINAP as a ligand, which produces more than 10 distinct classes of heterocycles. The reaction tolerates a broad array of functional groups and complex molecular scaffolds, including derivatives of peptides, natural products, and marketed drugs. Preliminary mechanistic investigation suggests in situ generations of [Cu(BINAP)2]+and [Cu(IPr)2]+catalysts that work cooperatively under visible‐light irradiation to facilitate catalytic carbo‐aroylation of unactivated alkenes, affording a wide range of useful heterocycles.

     
    more » « less
  2. Abstract

    With the aim of constructing hydrogen‐bonding networks in synthetic complexes, two new ligands derived fromcis,cis‐1,3,5‐triaminocyclohexane (TACH) have been prepared that feature pendant pyrrole or indole rings as outer‐sphere H‐bond donors. The TACH framework offers a facial arrangement of threeN‐donors, thereby mimicking common coordination motifs in the active sites of nonheme Fe and Cu enzymes. X‐ray structural characterization of a series of CuI‐X complexes (X=F, Cl, Br, NCS) revealed that these neutral ligands (H3LR, R=pyrrole or indole) coordinate in the intended facialN3manner, yielding four‐coordinate complexes with idealizedC3symmetry. The N−H units of the outer‐sphere heterocycles form a hydrogen‐bonding cavity around the axial (pseudo)halide ligand, as verified by crystallographic, spectroscopic, and computational analyses. Treatment of H3Lpyrroleand H3Lindolewith divalent transition metal chlorides (MIICl2, M=Fe, Cu, Zn) causes one heterocycle to deprotonate and coordinate to the M(II) center, giving rise to tetradentate ligands with two remaining outer‐sphere H‐bond donors. Further ligand deprotonation is observed upon reaction with Ni(II) and Cu(II) salts with weakly coordinating counteranions. The reported complexes highlight the versatility of TACH‐based ligands with pendant H‐bond donors, as the resulting scaffolds can support multiple protonation states, coordination geometries, and H‐bonding interactions.

     
    more » « less
  3. Abstract

    Ru(II) complexes were synthesized with π‐expanding (phenyl, fluorenyl, phenanthrenyl, naphthalen‐1‐yl, naphthalene‐2‐yl, anthryl and pyrenyl groups) attached at a 1H‐imidazo[4,5‐f][1,10]phenanthroline ligand and 4,4′‐dimethyl‐2,2′‐bipyridine (4,4′‐dmb) coligands. These Ru(II) complexes were characterized by 1D and 2D NMR, and mass spectroscopy, and studied for visible light and dark toxicity to human malignant melanoma SK‐MEL‐28 cells. In the SK‐MEL‐28 cells, the Ru(II) complexes are highly phototoxic (EC50 = 0.2–0.5 µm) and have low dark toxicity (EC50 = 58–230 µm). The highest phototherapeutic index (PI) of the series was found with the Ru(II) complex bearing the 2‐(pyren‐1‐yl)‐1H‐imidazo[4,5‐f][1,10]phenanthroline ligand. This high PI is in part attributed to the π‐rich character added by the pyrenyl group, and a possible low‐lying and longer‐lived3IL state due to equilibration with the3MLCT state. While this pyrenyl Ru(II) complex possessed a relatively high quantum yield for singlet oxygen formation (Φ = 0.84), contributions from type‐I processes (oxygen radicals and radical ions) are competitive with the type‐II (1O2) process based on effects of added sodium azide and solvent deuteration.

     
    more » « less
  4. Abstract

    The mechanism of the intermolecular hydroamination of 3‐methylbuta‐1,2‐diene (1) withN‐methylaniline (2) catalyzed by (IPr)AuOTf has been studied by employing a combination of kinetic analysis, deuterium labelling studies, and in situ spectral analysis of catalytically active mixtures. The results of these and additional experiments are consistent with a mechanism for hydroamination involving reversible, endergonic displacement ofN‐methylaniline from [(IPr)Au(NHMePh)]+(4) by allene to form the cationic gold π‐C1,C2‐allene complex [(IPr)Au(η2‐H2C=C=CMe2)]+(I), which is in rapid, endergonic equilibrium with the regioisomeric π‐C2,C3‐allene complex [(IPr)Au(η2‐Me2C=C=CH2)]+(I′). Rapid and reversible outer‐sphere addition of2to the terminal allene carbon atom ofI′to form gold vinyl complex (IPr)Au[C(=CH2)CMe2NMePh] (II) is superimposed on the slower addition of2to the terminal allene carbon atom ofIto form gold vinyl complex (IPr)Au[C(=CMe2)CH2NMePh] (III). Selective protodeauration ofIIIreleasesN‐methyl‐N‐(3‐methylbut‐2‐en‐1‐yl)aniline (3 a) with regeneration of4. At high conversion, gold vinyl complexIIis competitively trapped by an (IPr)Au+fragment to form the cationic bis(gold) vinyl complex {[(IPr)Au]2[C(=CH2)CMe2NMePh]}+(6).

     
    more » « less
  5. Abstract

    Intermediates relevant to cobalt‐catalyzed alkene hydroformylation have been isolated and evaluated in fundamental organometallic transformations relevant to aldehyde formation. The 18‐electron (R,R)‐(iPrDuPhos)Co(CO)2H has been structurally characterized, and it promotes exclusive hydrogenation of styrene in the presence of 50 bar of H2/CO gas (1:1) at 100 °C. Deuterium‐labeling studies established reversible 2,1‐insertion of styrene into the Co−D bond of (R,R)‐(iPrDuPhos)Co(CO)2D. Whereas rapid β‐hydrogen elimination from cobalt alkyls occurred under an N2atmosphere, alkylation of (R,R)‐(iPrDuPhos)Co(CO)2Cl in the presence of CO enabled the interception of (R,R)‐(iPrDuPhos)Co(CO)2C(O)CH2CH2Ph, which upon hydrogenolysis under 4 atm H2produced the corresponding aldehyde and cobalt hydride, demonstrating the feasibility of elementary steps in hydroformylation. Both the hydride and chloride derivatives, (X=H, Cl), underwent exchange with free13CO. Under reduced pressure, (R,R)‐(iPrDuPhos)Co(CO)2Cl underwent CO dissociation to form (R,R)‐(iPrDuPhos)Co(CO)Cl.

     
    more » « less