skip to main content


Title: Structural basis of neuropeptide Y signaling through Y1 receptor
Abstract

Neuropeptide Y (NPY) is highly abundant in the brain and involved in various physiological processes related to food intake and anxiety, as well as human diseases such as obesity and cancer. However, the molecular details of the interactions between NPY and its receptors are poorly understood. Here, we report a cryo-electron microscopy structure of the NPY-bound neuropeptide Y1 receptor (Y1R) in complex with Gi1protein. The NPY C-terminal segment forming the extended conformation binds deep into the Y1R transmembrane core, where the amidated C-terminal residue Y36 of NPY is located at the base of the ligand-binding pocket. Furthermore, the helical region and two N-terminal residues of NPY interact with Y1R extracellular loops, contributing to the high affinity of NPY for Y1R. The structural analysis of NPY-bound Y1R and mutagenesis studies provide molecular insights into the activation mechanism of Y1R upon NPY binding.

 
more » « less
Award ID(s):
2111728
NSF-PAR ID:
10363228
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neuropeptides play key roles in shaping the organization and function of neuronal circuits. In the inferior colliculus (IC), which is in the auditory midbrain, Neuropeptide Y (NPY) is expressed by a class of GABAergic neurons that project locally and outside the IC. Most neurons in the IC have local axon collaterals; however, the organization and function of local circuits in the IC remain unknown. We previously found that excitatory neurons in the IC can express the NPY Y1receptor (Y1R+) and application of the Y1R agonist, [Leu31, Pro34]-NPY (LP-NPY), decreases the excitability of Y1R+neurons. As NPY signaling regulates recurrent excitation in other brain regions, we hypothesized that Y1R+neurons form interconnected local circuits in the IC and that NPY decreases the strength of recurrent excitation in these circuits. To test this hypothesis, we used optogenetics to activate Y1R+neurons in mice of both sexes while recording from other neurons in the ipsilateral IC. We found that nearly 80% of glutamatergic IC neurons express the Y1receptor, providing extensive opportunities for NPY signaling to regulate local circuits. Additionally, Y1R+neuron synapses exhibited modest short-term synaptic plasticity, suggesting that local excitatory circuits maintain their influence over computations during sustained stimuli. We further found that application of LP-NPY decreased recurrent excitation in the IC, suggesting that NPY signaling strongly regulates local circuit function in the auditory midbrain. Our findings show that Y1R+excitatory neurons form interconnected local circuits in the IC, and their influence over local circuits is regulated by NPY signaling.

    SIGNIFICANCE STATEMENTLocal networks play fundamental roles in shaping neuronal computations in the brain. The IC, localized in the auditory midbrain, plays an essential role in sound processing, but the organization of local circuits in the IC is largely unknown. Here, we show that IC neurons that express the Neuropeptide Y1receptor (Y1R+neurons) make up most of the excitatory neurons in the IC and form interconnected local circuits. Additionally, we found that NPY, which is a powerful neuromodulator known to shape neuronal activity in other brain regions, decreases the extensive recurrent excitation mediated by Y1R+neurons in local IC circuits. Thus, our results suggest that local NPY signaling is a key regulator of auditory computations in the IC.

     
    more » « less
  2. Abstract

    Structure and functions of S100 proteins are regulated by two distinct calcium binding EF hand motifs. In this work, we used solution‐state NMR spectroscopy to investigate the cooperativity between the two calcium binding sites and map the allosteric changes at the target binding site. To parse the contribution of the individual calcium binding events, variants of S100A12 were designed to selectively bind calcium to either the EF‐I (N63A) or EF‐II (E31A) loop, respectively. Detailed analysis of the backbone chemical shifts for wildtype protein and its mutants indicates that calcium binding to the canonical EF‐II loop is the principal trigger for the conformational switch between ‘closed’ apo to the ‘open’ Ca2+‐bound conformation of the protein. Elimination of binding in S100‐specific EF‐I loop has limited impact on the calcium binding affinity of the EF‐II loop and the concomitant structural rearrangement. In contrast, deletion of binding in the EF‐II loop significantly attenuates calcium affinity in the EF‐I loop and the structure adopts a ‘closed’ apo‐like conformation. Analysis of experimental amide nitrogen (15N) relaxation rates (R1,R2, and15N–{1H} NOE) and molecular dynamics (MD) simulations demonstrate that the calcium bound state is relatively floppy with pico–nanosecond motions induced in functionally relevant domains responsible for target recognition such as the hinge domain and the C‐terminal residues. Experimental relaxation studies combined with MD simulations show that while calcium binding in the EF‐I loop alone does not induce significant motions in the polypeptide chain, EF‐I regulates fluctuations in the polypeptide in the presence of bound calcium in the EF‐II loop. These results offer novel insights into the dynamic regulation of target recognition by calcium binding and unravels the role of cooperativity between the two calcium binding events in S100A12.

     
    more » « less
  3. Abstract

    Neuropeptide Y (NPY) is an evolutionarily conserved neurosecretory molecule implicated in a diverse complement of functions across taxa and in regulating feeding behavior and reproductive maturation inOctopus. However, little is known about the precise molecular circuitry of NPY‐mediated behaviors and physiological processes, which likely involve a complex interaction of multiple signal molecules in specific brain regions. Here, we examined the expression of NPY throughout theOctopuscentral nervous system. The sequence analysis ofOctopusNPY precursor confirmed the presence of both, signal peptide and putative active peptides, which are highly conserved across bilaterians.In situhybridization revealed distinct expression of NPY in specialized compartments, including potential “integration centers,” where visual, tactile, and other behavioral circuitries converge. These centers integrating separate circuits may maintain and modulate learning and memory or other behaviors not yet attributed to NPY‐dependent modulation inOctopus. Extrasomatic localization of NPY mRNA in the neurites of specific neuron populations in the brain suggests a potential demand for immediate translation at synapses and a crucial temporal role for NPY in these cell populations. We also documented the presence of NPY mRNA in a small cell population in the olfactory lobe, which is a component of theOctopusfeeding and reproductive control centers. However, the molecular mapping of NPY expression only partially overlapped with that produced by immunohistochemistry in previous studies. Our study provides a precise molecular map of NPY mRNA expression that can be used to design and test future hypotheses about molecular signaling in variousOctopusbehaviors.

     
    more » « less
  4. Abstract

    Integration of reproduction and metabolism is necessary for species survival. While the neural circuits controlling energy homeostasis are well‐characterized, the signals controlling the relay of nutritional information to the reproductive axis are less understood. The cichlid fishAstatotilapia burtoniis ideal for studying the neural regulation of feeding and reproduction because females cycle between a feeding gravid state and a period of forced starvation while they brood developing young inside their mouths. To test the hypothesis that candidate neuropeptide‐containing neurons known to be involved in feeding and energy homeostasis in mammals show conserved distribution patterns, we performed immunohistochemistry and in situ hybridization to localize appetite‐stimulating (neuropeptide Y, NPY; agouti‐related protein, AGRP) and appetite‐inhibiting (cocaine and amphetamine‐regulated transcript, CART; pro‐opiomelanocortin,pomc1a) neurons in the brain. NPY, AGRP, CART, andpomc1asomata showed distribution patterns similar to other teleosts, which included localization to the lateral tuberal nucleus (NLT), the putative homolog of the mammalian arcuate nucleus. Gravid females also had larger NPY and AGRP neurons in the NLT compared to brooding females, but brooding females had largerpomc1aneurons compared to gravid females. HypothalamicagrpmRNA levels were also higher in gravid compared to brooding females. Thus, larger appetite‐stimulating neurons (NPY, AGRP) likely promote feeding while females are gravid, while largerpomc1aneurons may act as a signal to inhibit food intake during mouth brooding. Collectively, our data suggest a potential role for NPY, AGRP, POMC, and CART in regulating energetic status inA. burtonifemales during varying metabolic and reproductive demands.

     
    more » « less
  5. Abstract

    HIV-1 maturation inhibitors (MIs), Bevirimat (BVM) and its analogs interfere with the catalytic cleavage of spacer peptide 1 (SP1) from the capsid protein C-terminal domain (CACTD), by binding to and stabilizing the CACTD-SP1 region. MIs are under development as alternative drugs to augment current antiretroviral therapies. Although promising, their mechanism of action and associated virus resistance pathways remain poorly understood at the molecular, biochemical, and structural levels. We report atomic-resolution magic-angle-spinning NMR structures of microcrystalline assemblies of CACTD-SP1 complexed with BVM and/or the assembly cofactor inositol hexakisphosphate (IP6). Our results reveal a mechanism by which BVM disrupts maturation, tightening the 6-helix bundle pore and quenching the motions of SP1 and the simultaneously bound IP6. In addition, BVM-resistant SP1-A1V and SP1-V7A variants exhibit distinct conformational and binding characteristics. Taken together, our study provides a structural explanation for BVM resistance as well as guidance for the design of new MIs.

     
    more » « less