skip to main content


This content will become publicly available on March 19, 2025

Title: Calcium mediated static and dynamic allostery in S100A12 : Implications for target recognition by S100 proteins
Abstract

Structure and functions of S100 proteins are regulated by two distinct calcium binding EF hand motifs. In this work, we used solution‐state NMR spectroscopy to investigate the cooperativity between the two calcium binding sites and map the allosteric changes at the target binding site. To parse the contribution of the individual calcium binding events, variants of S100A12 were designed to selectively bind calcium to either the EF‐I (N63A) or EF‐II (E31A) loop, respectively. Detailed analysis of the backbone chemical shifts for wildtype protein and its mutants indicates that calcium binding to the canonical EF‐II loop is the principal trigger for the conformational switch between ‘closed’ apo to the ‘open’ Ca2+‐bound conformation of the protein. Elimination of binding in S100‐specific EF‐I loop has limited impact on the calcium binding affinity of the EF‐II loop and the concomitant structural rearrangement. In contrast, deletion of binding in the EF‐II loop significantly attenuates calcium affinity in the EF‐I loop and the structure adopts a ‘closed’ apo‐like conformation. Analysis of experimental amide nitrogen (15N) relaxation rates (R1,R2, and15N–{1H} NOE) and molecular dynamics (MD) simulations demonstrate that the calcium bound state is relatively floppy with pico–nanosecond motions induced in functionally relevant domains responsible for target recognition such as the hinge domain and the C‐terminal residues. Experimental relaxation studies combined with MD simulations show that while calcium binding in the EF‐I loop alone does not induce significant motions in the polypeptide chain, EF‐I regulates fluctuations in the polypeptide in the presence of bound calcium in the EF‐II loop. These results offer novel insights into the dynamic regulation of target recognition by calcium binding and unravels the role of cooperativity between the two calcium binding events in S100A12.

 
more » « less
NSF-PAR ID:
10496033
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Protein Science
Volume:
33
Issue:
4
ISSN:
0961-8368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. S100A12 or Calgranulin C is a homodimeric antimicrobial protein of the S100 family of EF-hand calcium-modulated proteins. S100A12 is involved in many diseases like inflammation, tumor invasion, cancer and neurological disorders like Alzheimer’s disease. The binding of transition metal ions to the protein is important as the sequestering of the metal ion induces conformational changes in the protein, inhibiting the growth of various pathogenic microorganisms. In this work, we probe the Cu(II) binding properties of Calgranulin C. We demonstrate that the two Cu(II) binding sites in Calgranulin C show different coordination environments in solution. Electron spin resonance (ESR) spectra of Cu(II)-bound protein clearly show two distinct components at higher Cu(II):protein ratios, which is indicative of the two different binding environments for the Cu(II) ions. The g|| and A|| values are also different for the two components, indicating that the number of directly coordinated nitrogens in each site differs. Furthermore, we perform Continuous Wave (CW)-titrations to obtain the binding affinity of the Ca(II)-loaded protein to Cu2+ ions. We observe a positive cooperativity in binding of the two Cu(II) ions. In order to further probe the Cu2+ coordination, we also perform Electron Spin Echo Envelope Modulation (ESEEM) experiment. We perform ESEEM at two different fields where one Cu(II) binding site dominates over the other. At both sites we see distinct signatures of Cu(II)-histidine coordination. However, we clearly see that the ESEEM spectra corresponding to the two Cu2+ binding sites are significantly different. There is clear change in the intensity of the double quantum (DQ) peak with respect to the nuclear quadrupole interaction (NQI) peak at the two different fields. Furthermore, ESEEM along with Hyperfine Sublevel Correlation (HYSCORE) show that only one of the two Cu(II) binding sites has backbone coordination, confirming our previous observation. Finally, we perform Double Electron Electron Resonance (DEER) spectroscopy to probe if the difference in binding environment is due to the Cu(II) binding to different sites in the protein. We obtain a distance distribution with a sharp peak at ~ 3 nm and a broad peak at ~ 4 nm. The shorter distance agrees with the Cu(II)-Cu(II) distance expected for a dimer from the crystal structure. The longer distance is consistent with the Cu(II)-Cu(II) distance when oligomerization occurs. 
    more » « less
  2. The biological importance of lanthanides, and the early lanthanides (La 3+ –Nd 3+ ) in particular, has only recently been recognized, and the structural principles underlying selective binding of lanthanide ions in biology are not yet well established. Lanmodulin (LanM) is a novel protein that displays unprecedented affinity and selectivity for lanthanides over most other metal ions, with an uncommon preference for the early lanthanides. Its utilization of EF-hand motifs to bind lanthanides, rather than the Ca 2+ typically recognized by these motifs in other proteins, has led it to be used as a model system to understand selective lanthanide recognition. Two-dimensional infrared (2D IR) spectroscopy combined with molecular dynamics simulations were used to investigate LanM's selectivity mechanisms by characterizing local binding site geometries upon coordination of early and late lanthanides as well as calcium. These studies focused on the protein's uniquely conserved proline residues in the second position of each EF-hand binding loop. We found that these prolines constrain the EF-hands for strong coordination of early lanthanides. Substitution of this proline results in a more flexible binding site to accommodate a larger range of ions but also results in less compact coordination geometries and greater disorder within the binding site. Finally, we identify the conserved glycine in the sixth position of each EF-hand as a mediator of local binding site conformation and global secondary structure. Uncovering fundamental structure–function relationships in LanM informs the development of synthetic biology technologies targeting lanthanides in industrial applications. 
    more » « less
  3. Malaria, mainly caused byPlasmodium falciparumandPlasmodium vivax,has been a growing cause of morbidity and mortality.P. falciparumis more lethal than isP. vivax, but there is a vital need for effective drugs against both species. Geranylgeranyl diphosphate synthase (GGPPS) is an enzyme involved in the biosynthesis of quinones and in protein prenylation and has been proposed to be a malaria drug target. However, the structure ofP. falciparumGGPPS(PfGGPPS) has not been determined, due to difficulties in crystallization. Here, we created aPfGGPPSmodel using the homologousP.vivaxGGPPSX‐ray structure as a template. We simulated the modeledPfGGPPSas well asPvGGPPSusing conventional and Gaussian accelerated molecular dynamics in bothapo‐andGGPP‐bound states. TheMDsimulations revealed a striking similarity in the dynamics of both enzymes with loop 9‐10 controlling access to the active site. We also found thatGGPPstabilizesPfGGPPSandPvGGPPSinto closed conformations andviasimilar mechanisms. Shape‐based analysis of the binding sites throughout the simulations suggests that the two enzymes will be readily targeted by the same inhibitors. Finally, we produced threeMD‐validated conformations ofPfGGPPSto be used in future virtual screenings for potential new antimalarial drugs acting on bothPvGGPPSandPfGGPPS.

     
    more » « less
  4. Abstract

    Phosphodiesterase‐5 (PDE5) is responsible for regulating the concentration of the second messenger molecule cGMP by hydrolyzing it into 5′‐GMP. PDE5 is implicated in erectile dysfunction and cardiovascular diseases. The substrate binding site in the catalytic domain of PDE5 is surrounded by several dynamic structural motifs (including the α14 helix, M‐loop, and H‐loop) that are known to switch between inactive and active conformational states via currently unresolved structural intermediates. We evaluated the conformational dynamics of these structural motifs in the apo state and upon binding of an allosteric inhibitor (evodiamine) oravanafil, a competitive inhibitor. We employed enhanced sampling‐based replica exchange solute scaling (REST2) method, principal component analysis (PCA), time‐lagged independent component analysis (tICA), molecular dynamics (MD) simulations, and well‐tempered metadynamics simulations to probe the conformational changes in these structural motifs. Our results support a regulatory mechanism for PDE5, where the α14 helix alternates between an inward (lower activity) conformation and an outward (higher activity) conformation that is accompanied by the folding/unfolding of the α8′ and α8″ helices of the H‐loop. When the allosteric inhibitor evodiamine is bound to PDE5, the inward (inactive) state of the α14 helix is preferred, thus preventing substrate access to the catalytic site. In contrast, competitive inhibitors of PDE5 block catalysis by occupying the active site accompanied by stabilization of the outward conformation of the α14 helix. Defining the conformational dynamics underlying regulation of PDE5 activation will be helpful in rational design of next‐generation small molecules modulators of PDE5 activity.

     
    more » « less
  5. Abstract

    We used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to obtain a comprehensive view of transporter dynamics (85.8% sequence coverage) occurring throughout the multidrug efflux transporter P-glycoprotein (P-gp) in three distinct conformational states: predominantly inward-facing apo P-gp, pre-hydrolytic (E552Q/E1197Q) P-gp bound to Mg+2-ATP, and outward-facing P-gp bound to Mg+2-ADP-VO4−3. Nucleotide affinity was measured with bio-layer interferometry (BLI), which yielded kinetics data that fit a two Mg+2-ATP binding-site model. This model has one high affinity site (3.2 ± 0.3 µM) and one low affinity site (209 ± 25 µM). Comparison of deuterium incorporation profiles revealed asymmetry between the changes undergone at the critical interfaces where nucleotide binding domains (NBDs) contact intracellular helices (ICHs). In the pre-hydrolytic state, both interfaces between ICHs and NBDs decreased exchange to similar extents relative to inward-facing P-gp. In the outward-facing state, the ICH-NBD1 interface showed decreased exchange, while the ICH-NBD2 interface showed less of an effect. The extracellular loops (ECLs) showed reduced deuterium uptake in the pre-hydrolytic state, consistent with an occluded conformation. While in the outward-facing state, increased ECL exchange corresponding to EC domain opening was observed. These findings point toward asymmetry between both NBDs, and they suggest that pre-hydrolytic P-gp occupies an occluded conformation.

     
    more » « less