ABSTRACT In large-scale hydrodynamical cosmological simulations, the fate of massive galaxies is mainly dictated by the modelling of feedback from active galactic nuclei (AGNs). The amount of energy released by AGN feedback is proportional to the mass that has been accreted on to the black holes (BHs), but the exact subgrid modelling of AGN feedback differs in all simulations. While modern simulations reliably produce populations of quiescent massive galaxies at z ≤ 2, it is also crucial to assess the similarities and differences of the responsible AGN populations. Here, we compare the AGN populations of the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA simulations. The AGN luminosity function (LF) varies significantly between simulations. Although in agreement with current observational constraints at z = 0, at higher redshift the agreement of the LFs deteriorates with most simulations producing too many AGNs of $$L_{\rm x, 2\!-\!10 \, keV}\sim 10^{43\!-\!44}\, \rm erg\, s^{-1}$$. AGN feedback in some simulations prevents the existence of any bright AGN with $$L_{\rm x, 2\!-\!10 \, keV}\geqslant 10^{45}\rm \,erg\, s^{-1}$$ (although this is sensitive to AGN variability), and leads to smaller fractions of AGN in massive galaxies than in the observations at z ≤ 2. We find that all the simulations fail at producing a number density of AGN in good agreement with observational constraints for both luminous ($$L_{\rm x, 2\!-\!10 \, keV}\sim 10^\text{43-45}\, \rm erg\, s^{-1}$$) and fainter ($$L_{\rm x, 2\!-\!10 \, keV}\sim 10^\text{42-43}\, \rm erg\, s^{-1}$$) AGNs and at both low and high redshifts. These differences can aid us in improving future BH and galaxy subgrid modelling in simulations. Upcoming X-ray missions (e.g. Athena, AXIS, and LynX) will bring faint AGNs to light and new powerful constraints. After accounting for AGN obscuration, we find that the predicted number density of detectable AGNs in future surveys spans at least one order of magnitude across the simulations, at any redshift.
more »
« less
Co-evolution of massive black holes and their host galaxies at high redshift: discrepancies from six cosmological simulations and the key role of JWST
ABSTRACT The James Webb Space Telescope will have the power to characterize high-redshift quasars at z ≥ 6 with an unprecedented depth and spatial resolution. While the brightest quasars at such redshift (i.e. with bolometric luminosity $$L_{\rm bol}\geqslant 10^{46}\, \rm erg/s$$) provide us with key information on the most extreme objects in the Universe, measuring the black hole (BH) mass and Eddington ratios of fainter quasars with $$L_{\rm bol}= 10^{45}-10^{46}\, \rm erg\,s^{ -1}$$ opens a path to understand the build-up of more normal BHs at z ≥ 6. In this paper, we show that the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA large-scale cosmological simulations do not agree on whether BHs at z ≥ 4 are overmassive or undermassive at fixed galaxy stellar mass with respect to the MBH − M⋆ scaling relation at z = 0 (BH mass offsets). Our conclusions are unchanged when using the local scaling relation produced by each simulation or empirical relations. We find that the BH mass offsets of the simulated faint quasar population at z ≥ 4, unlike those of bright quasars, represent the BH mass offsets of the entire BH population, for all the simulations. Thus, a population of faint quasars with $$L_{\rm bol}= 10^{45}-10^{46}\, \rm erg\,s^{ -1}$$ observed by JWST can provide key constraints on the assembly of BHs at high redshift. Moreover, this will help constraining the high-redshift regime of cosmological simulations, including BH seeding, early growth, and co-evolution with the host galaxies. Our results also motivate the need for simulations of larger cosmological volumes down to z ∼ 6, with the same diversity of subgrid physics, in order to gain statistics on the most extreme objects at high redshift.
more »
« less
- PAR ID:
- 10363253
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 511
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 3751-3767
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We explore implications of a range of black hole (BH) seeding prescriptions on the formation of the brightest $$z$$ ≳ 6 quasars in cosmological hydrodynamic simulations. The underlying galaxy formation model is the same as in the IllustrisTNG simulations. Using constrained initial conditions, we study the growth of BHs in rare overdense regions (forming $$\gtrsim 10^{12}\, {\rm M}_{\odot }\,h^{-1}$$ haloes by $$z$$ = 7) using a (9 Mpc h−1)3 simulated volume. BH growth is maximal within haloes that are compact and have a low tidal field. For these haloes, we consider an array of gas-based seeding prescriptions wherein $$M_{\mathrm{seed}}=10^4\!-\!10^6\, {\rm M}_{\odot }\,h^{-1}$$ seeds are inserted in haloes above critical thresholds for halo mass and dense, metal-poor gas mass (defined as $$\tilde{M}_{\mathrm{h}}$$ and $$\tilde{M}_{\mathrm{sf,mp}}$$, respectively, in units of Mseed). We find that a seed model with $$\tilde{M}_{\mathrm{sf,mp}}=5$$ and $$\tilde{M}_{\mathrm{h}}=3000$$ successfully produces a $$z$$ ∼ 6 quasar with $$\sim 10^9\, {\rm M}_{\odot }$$ mass and ∼1047 erg s−1 luminosity. BH mergers play a crucial role at $$z$$ ≳ 9, causing an early boost in BH mass at a time when accretion-driven BH growth is negligible. With more stringent seeding conditions (e.g. $$\tilde{M}_{\mathrm{sf,mp}}=1000$$), the relative paucity of BH seeds results in a much lower merger rate. In this case, $$z$$ ≳ 6 quasars can only be formed if we enhance the maximum allowed BH accretion rates (by factors ≳10) compared to the accretion model used in IllustrisTNG. This can be achieved either by allowing for super-Eddington accretion, or by reducing the radiative efficiency. Our results demonstrate that progenitors of $$z$$ ∼ 6 quasars have distinct BH merger histories for different seeding models, which will be distinguishable with Laser Interferometer Space Antenna observations.more » « less
-
Aims. We study the ensemble X-ray variability properties of active galactic nuclei (AGN) over large ranges of timescale (20 ks ≤ T ≤ 14 yr), redshift (0 ≤ z ≲ 3), luminosity (10 40 erg s −1 ≤ L X ≤ 10 46 erg s −1 ), and black hole (BH) mass (10 6 ≤ M ⊙ ≤ 10 9 ). Methods. We propose the use of the variance-frequency diagram as a viable alternative to the study of the power spectral density (PSD), which is not yet accessible for distant, faint, and/or sparsely sampled AGN. Results. We show that the data collected from archival observations and previous literature studies are fully consistent with a universal PSD form, which does not show any evidence for systematic evolution of shape or amplitude with redshift or luminosity, even if there may be differences between individual AGN at a given redshift or luminosity. We find new evidence that the PSD bend frequency depends on BH mass and possibly on accretion rate. We finally discuss the implications for current and future AGN population and cosmological studies.more » « less
-
ABSTRACT A major open question in astrophysics is the mechanisms by which massive black holes (BHs) form in the early Universe, which pose constraints on seeding models. We study BH formation and evolution in a flexible model combining the cosmological IllustrisTNG (TNG) simulations with semi-analytic modelling in post-processing. We identify our TNG model hosts based on various criteria including a minimum gas mass of $10^7$$–$$10^9$${\rm M}_{\odot }$$, total host mass of $$10^{8.5}$$–$$10^{10.5}$${\rm M}_{\odot }$$, and a maximum gas metallicity of 0.01–0.1 $$\mathrm{Z}_{\odot }$$. Each potential host is assigned a BH seed with a probability of 0.01–1. The populations follow the TNG galaxy merger tree. This approach improves upon the predictive power of the simple TNG BH seeding prescription, narrowing down plausible seeding parameter spaces, and it is readily adaptable to other cosmological simulations. Several model realizations predict $$z\lesssim 4$$ BH mass densities that are consistent with empirical data as well as the TNG BHs. However, high-redshift BH number densities can differ by factors of $$\sim$$ 10 to $$\gtrsim$$ 100 between seeding parameters. In most model realizations, $$\lesssim 10^5$${\rm M}_{\odot }$$ BHs substantially outnumber heavier BHs at high redshifts. Mergers between such BHs are prime targets for gravitational-wave detection with Laser Interferometer Space Antenna. The $z=0$ BH mass densities in most realizations of the model agree well with observations, but our strictest seeding criteria fail at high redshift. Our findings strongly motivate the need for better empirical constraints on high-z BHs, and they underscore the significance of recent active galactic nucleus discoveries with JWST.more » « less
-
ABSTRACT The sensitivity of X-ray facilities and our ability to detect fainter active galactic nuclei (AGNs) will increase with the upcoming Athena mission and the AXIS and Lynx concept missions, thus improving our understanding of supermassive black holes (BHs) in a luminosity regime that can be dominated by X-ray binaries. We analyse the population of faint AGNs ($$L_{\rm x, 2{-}10 \, keV}\leqslant 10^{42}\, \rm erg\,s^{ -1}$$) in the Illustris, TNG100, EAGLE, and SIMBA cosmological simulations, and find that the properties of their host galaxies vary from one simulation to another. In Illustris and EAGLE, faint AGNs are powered by low-mass BHs located in low-mass star-forming galaxies. In TNG100 and SIMBA, they are mostly associated with more massive BHs in quenched massive galaxies. We model the X-ray binary (XRB) populations of the simulated galaxies, and find that AGNs often dominate the galaxy AGN + XRB hard X-ray luminosity at z > 2, while XRBs dominate in some simulations at z < 2. Whether the AGN or XRB emission dominates in star-forming and quenched galaxies depends on the simulations. These differences in simulations can be used to discriminate between galaxy formation models with future high-resolution X-ray observations. We compare the luminosity of simulated faint AGN host galaxies to observations of stacked galaxies from Chandra. Our comparison indicates that the simulations post-processed with our X-ray modelling tend to overestimate the AGN + XRB X-ray luminosity; luminosity that can be strongly affected by AGN obscuration. Some simulations reveal clear AGN trends as a function of stellar mass (e.g. galaxy luminosity drop in massive galaxies), which are not apparent in the observations.more » « less