skip to main content


Search for: All records

Award ID contains: 2009687

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Negative feedback from accreting supermassive black holes is considered crucial in suppressing star formation and quenching massive galaxies. However, several models and observations suggest that black hole feedback may have a positive effect, triggering star formation by compressing interstellar medium gas to higher densities. We investigate the dual role of black hole feedback using cosmological hydrodynamic simulations from the Feedback In Realistic Environment (FIRE) project, incorporating a novel implementation of hyper-refined accretion-disc winds. Focusing on a massive, star-forming galaxy at z ∼ 2 ($M_{\rm halo} \sim 10^{12.5}\, {\rm M}_{\odot }$), we demonstrate that strong quasar winds with a kinetic power of ∼1046 erg s−1, persisting for over 20 Myr, drive the formation of a central gas cavity and significantly reduce the surface density of star formation across the galaxy’s disc. The suppression of star formation primarily occurs by limiting the availability of gas for star formation rather than by evacuating the pre-existing star-forming gas reservoir (preventive feedback dominates over ejective feedback). Despite the overall negative impact of quasar winds, we identify several potential indicators of local positive feedback, including (1) the spatial anticorrelation between wind-dominated regions and star-forming clumps, (2) higher local star formation efficiency in compressed gas at the edge of the cavity, and (3) increased contribution of outflowing material to local star formation. Moreover, stars formed under the influence of quasar winds tend to be located at larger radial distances. Our findings suggest that both positive and negative AGN feedback can coexist within galaxies, although the local positive triggering of star formation has a minor influence on global galaxy growth.

     
    more » « less
  2. ABSTRACT

    Without active galactic nucleus (AGN) feedback, simulated massive, star-forming galaxies become too compact relative to observed galaxies at z ≲ 2. In this paper, we perform high-resolution re-simulations of a massive ($M_{\star }\sim 10^{11}\, \rm {{\rm M}_{\odot }}$) galaxy at z ∼ 2.3, drawn from the Feedback in Realistic Environments (FIRE) project. In the simulation without AGN feedback, the galaxy experiences a rapid starburst and shrinking of its half-mass radius. We experiment with driving mechanical AGN winds, using a state-of-the-art hyper-Lagrangian refinement technique to increase particle resolution. These winds reduce the gas surface density in the inner regions of the galaxy, suppressing the compact starburst and maintaining an approximately constant half-mass radius. Using radiative transfer, we study the impact of AGN feedback on the magnitude and extent of the multiwavelength continuum emission. When AGN winds are included, the suppression of the compact, dusty starburst results in lowered flux at FIR wavelengths (due to decreased star formation) but increased flux at optical-to-near-IR wavelengths (due to decreased dust attenuation, in spite of the lowered star formation rate), relative to the case without AGN winds. The FIR half-light radius decreases from ∼1 to $\sim 0.1\, \rm {kpc}$ in $\lesssim 40\, \rm {Myr}$ when AGN winds are not included, but increases to $\sim 2\, \rm {kpc}$ when they are. Interestingly, the half-light radius at optical-NIR wavelengths remains approximately constant over $35\, \rm {Myr}$, for simulations with and without AGN winds. In the case without winds, this occurs despite the rapid compaction, and is due to heavy dust obscuration in the inner regions of the galaxy. This work highlights the importance of forward-modelling when comparing simulated and observed galaxy populations.

     
    more » « less
  3. ABSTRACT

    Feedback from accreting supermassive black holes (SMBHs) is thought to be a primary driver of quenching in massive galaxies, but how to best implement SMBH physics into galaxy formation simulations remains ambiguous. As part of the Feedback in Realistic Environments (FIRE) project, we explore the effects of different modelling choices for SMBH accretion and feedback in a suite of ∼500 cosmological zoom-in simulations across a wide range of halo mass (1010–1013 M⊙). Within the suite, we vary the numerical schemes for BH accretion and feedback, accretion efficiency, and the strength of mechanical, radiative, and cosmic ray feedback independently. We then compare the outcomes to observed galaxy scaling relations. We find several models satisfying observational constraints for which the energetics in different feedback channels are physically plausible. Interestingly, cosmic rays accelerated by SMBHs play an important role in many plausible models. However, it is non-trivial to reproduce scaling relations across halo mass, and many model variations produce qualitatively incorrect results regardless of parameter choices. The growth of stellar and BH mass are closely related: for example, overmassive BHs tend to overquench galaxies. BH mass is most strongly affected by the choice of accretion efficiency in high-mass haloes, but by feedback efficiency in low-mass haloes. The amount of star formation suppression by SMBH feedback in low-mass haloes is determined primarily by the time-integrated feedback energy. For massive galaxies, the ‘responsiveness’ of a model (how quickly and powerfully the BH responds to gas available for accretion) is an additional important factor for quenching.

     
    more » « less
  4. ABSTRACT

    Recent years have seen growing interest in post-processing cosmological simulations with radiative transfer codes to predict observable fluxes for simulated galaxies. However, this can be slow, and requires a number of assumptions in cases where simulations do not resolve the interstellar medium (ISM). Zoom-in simulations better resolve the detailed structure of the ISM and the geometry of stars and gas; however, statistics are limited due to the computational cost of simulating even a single halo. In this paper, we make use of a set of high-resolution, cosmological zoom-in simulations of massive ($M_{\star }\gtrsim 10^{10.5}\, \rm {M_{\odot }}$ at z = 2), star-forming galaxies from the FIRE suite. We run the skirt radiative transfer code on hundreds of snapshots in the redshift range 1.5 < z < 5 and calibrate a power-law scaling relation between dust mass, star formation rate, and $870\, \mu \rm {m}$ flux density. The derived scaling relation shows encouraging consistency with observational results from the sub-millimetre-selected AS2UDS sample. We extend this to other wavelengths, deriving scaling relations between dust mass, stellar mass, star formation rate, and redshift and sub-millimetre flux density at observed-frame wavelengths between $\sim \! 340$ and $\sim \! 870\, \mu \rm {m}$. We then apply the scaling relations to galaxies drawn from EAGLE, a large box cosmological simulation. We show that the scaling relations predict EAGLE sub-millimetre number counts that agree well with previous results that were derived using far more computationally expensive radiative transfer techniques. Our scaling relations can be applied to other simulations and semi-analytical or semi-empirical models to generate robust and fast predictions for sub-millimetre number counts.

     
    more » « less
  5. Abstract

    Single flux density measurements at observed-frame submillimeter and millimeter wavelengths are commonly used to probe dust and gas masses in galaxies. In this Letter, we explore the robustness of this method to infer dust mass, focusing on quiescent galaxies, using a series of controlled experiments on four massive halos from the Feedback in Realistic Environments project. Our starting point is four star-forming central galaxies at seven redshifts betweenz= 1.5 andz= 4.5. We generate modified quiescent galaxies that have been quenched for 100 Myr, 500 Myr, or 1 Gyr prior to each of the studied redshifts by reassigning stellar ages. We derive spectral energy distributions for each fiducial and modified galaxy using radiative transfer. We demonstrate that the dust mass inferred is highly dependent on the assumed dust temperature,Tdust, which is often unconstrained observationally. Motivated by recent work on quiescent galaxies that assumedTdust∼ 25 K, we show that the ratio between dust mass and 1.3 mm flux density can be higher than inferred by up to an order of magnitude, due to the considerably lower dust temperatures seen in non-star-forming galaxies. This can lead to an underestimation of dust mass (and, when submillimeter flux density is used as a proxy for molecular gas content and gas mass). This underestimation is most severe at higher redshifts, where the observed-frame 1.3 mm flux density probes rest-frame wavelengths far from the Rayleigh–Jeans regime, and hence depends superlinearly on dust temperature. We fit relations between ratios of rest-frame far-infrared flux densities and mass-weighted dust temperature that can be used to constrain dust temperatures from observations and hence derive more reliable dust and molecular gas masses.

     
    more » « less
  6. ABSTRACT

    Several recent simulations of galaxy formation predict two main phases of supermassive black hole (BH) accretion: an early, highly intermittent phase (during which BHs are undermassive relative to local scaling relations), followed by a phase of accelerated growth. We investigate physical factors that drive the transition in BH accretion in cosmological zoom-in simulations from the FIRE project, ranging from dwarf galaxies to galaxies sufficiently massive to host luminous quasars. The simulations model multichannel stellar feedback, but neglect AGN feedback. We show that multiple physical properties, including halo mass, galaxy stellar mass, and depth of the central gravitational potential correlate with accelerated BH fuelling: constant thresholds in these properties are typically crossed within ∼0.1 Hubble time of accelerated BH fuelling. Black hole masses increase sharply when the stellar surface density in the inner 1 kpc crosses a threshold $\Sigma^\star _{1\,\rm kpc}\approx 10^{9.5} \, {\rm M_{\odot }}\,{\rm kpc}^{-2}$, a characteristic value above which gravity prevents stellar feedback from ejecting gas, and similar to the value above which galaxies are observed to quench. We further show that accelerated BH growth correlates with the emergence of long-lived thin gas discs, as well as with virialization of the inner circumgalactic medium. The halo mass Mhalo ∼ 1012 M⊙ and stellar mass M* ∼ 1010.5 M⊙ at which BH growth accelerates correspond to ∼L⋆ galaxies. The fact that stellar feedback becomes inefficient at ejecting gas from the nucleus above this mass scale may play an important role in explaining why AGN feedback appears to be most important in galaxies above L⋆.

     
    more » « less
  7. ABSTRACT

    The James Webb Space Telescope will have the power to characterize high-redshift quasars at z ≥ 6 with an unprecedented depth and spatial resolution. While the brightest quasars at such redshift (i.e. with bolometric luminosity $L_{\rm bol}\geqslant 10^{46}\, \rm erg/s$) provide us with key information on the most extreme objects in the Universe, measuring the black hole (BH) mass and Eddington ratios of fainter quasars with $L_{\rm bol}= 10^{45}-10^{46}\, \rm erg\,s^{ -1}$ opens a path to understand the build-up of more normal BHs at z ≥ 6. In this paper, we show that the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA large-scale cosmological simulations do not agree on whether BHs at z ≥ 4 are overmassive or undermassive at fixed galaxy stellar mass with respect to the MBH − M⋆ scaling relation at z = 0 (BH mass offsets). Our conclusions are unchanged when using the local scaling relation produced by each simulation or empirical relations. We find that the BH mass offsets of the simulated faint quasar population at z ≥ 4, unlike those of bright quasars, represent the BH mass offsets of the entire BH population, for all the simulations. Thus, a population of faint quasars with $L_{\rm bol}= 10^{45}-10^{46}\, \rm erg\,s^{ -1}$ observed by JWST can provide key constraints on the assembly of BHs at high redshift. Moreover, this will help constraining the high-redshift regime of cosmological simulations, including BH seeding, early growth, and co-evolution with the host galaxies. Our results also motivate the need for simulations of larger cosmological volumes down to z ∼ 6, with the same diversity of subgrid physics, in order to gain statistics on the most extreme objects at high redshift.

     
    more » « less
  8. ABSTRACT

    The concurrent growth of supermassive black holes (SMBHs) and their host galaxies remains to be fully explored, especially at high redshift. While often understood as a consequence of self-regulation via AGN feedback, it can also be explained by alternative SMBH accretion models. Here, we expand on previous work by studying the growth of SMBHs with the help of a large suite of cosmological zoom-in simulations (MassiveFIRE) that are part of the Feedback in Realistic Environments (FIRE) project. The growth of SMBHs is modelled in post-processing with different black hole accretion models, placements, and merger treatments, and validated by comparing to on-the-fly calculations. Scaling relations predicted by the gravitational torque-driven accretion (GTDA) model agree with observations at low redshift without the need for AGN feedback, in contrast to models in which the accretion rate depends strongly on SMBH mass. At high redshift, we find deviations from the local scaling relations in line with previous theoretical results. In particular, SMBHs are undermassive, presumably due to stellar feedback, but start to grow efficiently once their host galaxies reach M* ∼ 1010M⊙. We analyse and explain these findings in the context of a simple analytic model. Finally, we show that the predicted scaling relations depend sensitively on the SMBH location and the efficiency of SMBH merging, particularly in low-mass systems. These findings highlight the relevance of understanding the evolution of SMBH-galaxy scaling relations to predict the rate of gravitational wave signals from SMBH mergers across cosmic history.

     
    more » « less
  9. ABSTRACT

    We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the galaxy. Among galaxies with a high fraction ($\gt 70{{\ \rm per\ cent}}$) of their young stars in a thin disc (h/R ∼ 0.1), we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (≳20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to $\lesssim 10^4\, {\rm K}$; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disc, and while cooling transitions from a quasi-spherical spatial configuration to a more-flattened, disc-like configuration. We show that the existence of this ‘rotating cooling flow’ accretion mode is strongly correlated with the fraction of stars forming in a thin disc, using a sample of 17 z ∼ 0 galaxies spanning a halo mass range of 1010.5 M⊙ ≲ Mh ≲ 1012 M⊙ and stellar mass range of 108 M⊙ ≲ M⋆ ≲ 1011 M⊙. Notably, galaxies with a thick disc or irregular morphology do not undergo significant angular momentum alignment of gas prior to accretion and show no correspondence between halo gas cooling and flattening. Our results suggest that rotating cooling flows (or, more generally, rotating subsonic flows) that become coherent and angular momentum-supported prior to accretion on to the galaxy are likely a necessary condition for the formation of thin, star-forming disc galaxies in a ΛCDM universe.

     
    more » « less
  10. ABSTRACT

    Previous studies of fueling black holes in galactic nuclei have argued (on scales ${\sim}0.01{-}1000\,$pc) accretion is dynamical with inflow rates $\dot{M}\sim \eta \, M_{\rm gas}/t_{\rm dyn}$ in terms of gas mass Mgas, dynamical time tdyn, and some η. But these models generally neglected expulsion of gas by stellar feedback, or considered extremely high densities where expulsion is inefficient. Studies of star formation, however, have shown on sub-kpc scales the expulsion efficiency fwind = Mejected/Mtotal scales with the gravitational acceleration as $(1-f_{\rm wind})/f_{\rm wind}\sim \bar{a}_{\rm grav}/\langle \dot{p}/m_{\ast }\rangle \sim \Sigma _{\rm eff}/\Sigma _{\rm crit}$ where $\bar{a}_{\rm grav}\equiv G\, M_{\rm tot}(\lt r)/r^{2}$ and $\langle \dot{p}/m_{\ast }\rangle$ is the momentum injection rate from young stars. Adopting this as the simplest correction for stellar feedback, $\eta \rightarrow \eta \, (1-f_{\rm wind})$, we show this provides a more accurate description of simulations with stellar feedback at low densities. This has immediate consequences, predicting the slope and normalization of the MBH − σ and MBH − Mbulge relation, LAGN −SFR relations, and explanations for outliers in compact Es. Most strikingly, because star formation simulations show expulsion is efficient (fwind ∼ 1) below total-mass surface density $M_{\rm tot}/\pi \, r^{2}\lt \Sigma _{\rm crit}\sim 3\times 10^{9}\, \mathrm{M}_{\odot }\, {\rm kpc^{-2}}$ (where $\Sigma _{\rm crit}=\langle \dot{p}/m_{\ast }\rangle /(\pi \, G)$), BH mass is predicted to specifically trace host galaxy properties above a critical surface brightness Σcrit (B-band $\mu _{\rm B}^{\rm crit}\sim 19\, {\rm mag\, arcsec^{-2}}$). This naturally explains why BH masses preferentially reflect bulge properties or central surface densities (e.g. $\Sigma _{1\, {\rm kpc}}$), not ‘total’ galaxy properties.

     
    more » « less