skip to main content


Title: Entropy determination for mixtures in the adiabatic grand-isobaric ensemble

The entropy change that occurs upon mixing two fluids has remained an intriguing topic since the dawn of statistical mechanics. In this work, we generalize the grand-isobaric ensemble to mixtures and develop a Monte Carlo algorithm for the rapid determination of entropy in these systems. A key advantage of adiabatic ensembles is the direct connection they provide with entropy. Here, we show how the entropy of a binary mixture A–B can be readily obtained in the adiabatic grand-isobaric ( μA, μB, P, R) ensemble, in which μAand μBdenote the chemical potential of components A and B, respectively, P is the pressure, and R is the heat (Ray) function, that corresponds to the total energy of the system. This, in turn, allows for the evaluation of the entropy of mixing and the Gibbs free energy of mixing. We also demonstrate that our approach performs very well both on systems modeled with simple potentials and with complex many-body force fields. Finally, this approach provides a direct route to the determination of the thermodynamic properties of mixing and allows for the efficient detection of departures from ideal behavior in mixtures.

 
more » « less
NSF-PAR ID:
10363261
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
156
Issue:
8
ISSN:
0021-9606
Page Range / eLocation ID:
Article No. 084113
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    We study flavor changing neutral current decays ofBandKmesons in the dark U(1)Dmodel, with the dark photon/darkZmass between 10 MeV and 2 GeV. Although the model provides an improved fit (compared to the standard model) to the differential decay distributions ofB → K(∗)+, with=μ,e, andBs→ ϕμ+μ, the allowed parameter space is ruled out by measurements of atomic parity violation,K+→ μ++invisibledecay, and$$ {B}_s-{\overline{B}}_s $$BsB¯smixing, among others. To evade constraints from low energy data, we extend the model to allow for (1) additional invisibleZDdecay, (2) a direct vector coupling ofZDto muons, and (3) a direct coupling ofZDto both muons and electrons, with the electron coupling fine-tuned to cancel theZDcoupling to electrons via mixing. We find that only the latter case survives all constraints.

     
    more » « less
  2. Abstract

    Common assumptions in temperature lapse rate formulas for lifted air parcels include neglecting mixing, hydrostatic balance, the removal of all condensate once it forms (pseudoadiabatic), and/or the retention of all condensate within the parcel (adiabatic). These formulas are commonly derived from the conservation of entropy, which leads to errors when nonequilibrium mixed-phase condensate is present. To evaluate these assumptions, a new general lapse rate formula is derived from an expression for energy conservation, rather than entropy conservation. This new formula incorporates mixing of the parcel with its surroundings, relaxes the hydrostatic assumption, allows for nonequilibrium mixed-phase condensate, and can be formulated for pseudoadiabatic or adiabatic ascent. The new formula is shown to exactly conserve entropy for reversible ascent. Predictions by the new formula are compared to that of older and less general formulas. The errors in previous formulas arise from the assumption of hydrostatic balance, which results in considerable warm biases due to the neglect of the energy sink from buoyancy. Predictions of ascent with entrainment using the new formula are then compared to parcel properties along trajectories in large eddy simulations. Simulated parcel properties are better predicted by the formula using a diluted analogy to adiabatic ascent, wherein condensate is diluted at the same rate as other parcel properties, than by the diluted analogy to pseudoadiabatic ascent, wherein all condensate is removed. These results suggest that CAPE should be computed with adiabatic, rather than pseudoadiabatic, parcel ascent.

     
    more » « less
  3. Abstract

    We present modeling results of tube and knot (T&K) dynamics accompanying thermospheric Kelvin Helmholtz Instabilities (KHI) in an event captured by the 2018 Super Soaker campaign (R. L. Mesquita et al., 2020,https://doi.org/10.1029/2020JA027972). Chemical tracers released by a rocketsonde on 26 January 2018 showed coherent KHI in the lower thermosphere that rapidly deteriorated within 45–90 s. Using wind and temperature data from the event, we conducted high resolution direct numerical simulations (DNS) employing both wide and narrow spanwise domains to facilitate (wide domain case) and prohibit (narrow domain case) the axial deformation of KH billows that allows tubes and knots to form. KHI T&K dynamics are shown to produce accelerated instability evolution consistent with the observations, achieving peak dissipation rates nearly two times larger and 1.8 buoyancy periods faster than axially uniform KHI generated by the same initial conditions. Rapidly evolving twist waves are revealed to drive the transition to turbulence; their evolution precludes the formation of secondary convective instabilities and secondary KHI seen to dominate the turbulence evolution in artificially constrained laboratory and simulation environments. T&K dynamics extract more kinetic energy from the background environment and yield greater irreversible energy exchange and entropy production, yet they do so with weaker mixing efficiency due to greater energy dissipation. The results suggest that enhanced mixing from thermospheric KHI T&K events could account for the discrepancy between modeled and observed mixing in the lower thermosphere (Garcia et al., 2014,https://doi.org/10.1002/2013JD021208; Liu, 2021,https://doi.org/10.1029/2020GL091474) and merits further study.

     
    more » « less
  4. Abstract

    In the upcoming decades, one of the primary objectives in exoplanet science is to search for habitable planets and signs of extraterrestrial life in the Universe. Signs of life can be indicated by thermal-dynamical imbalance in terrestrial planet atmospheres. O2and CH4in the modern Earth’s atmosphere are such signs, commonly termed biosignatures. These biosignatures in exoplanetary atmospheres can potentially be detectable through high-contrast imaging instruments on future extremely large telescopes. To quantify the signal-to-noise ratio (S/N) with extremely large telescopes, we select up to 10 nearby rocky planets and simulate medium-resolution (R∼ 1000) direct imaging of these planets using the Mid-infrared ELT Imager and Spectrograph (ELT/METIS, 3–5.6μm) and the High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (ELT/HARMONI, 0.5–2.45μm). We calculate the S/N for the detection of biosignatures including CH4, O2, H2O, and CO2. Our results show that GJ 887 b has the highest detection of S/N for biosignatures, and Proxima Cen b exhibits the only detectable CO2among the targets for ELT/METIS direct imaging. We also investigate the TRAPPIST-1 system, the archetype of nearby transiting rocky planet systems, and compare the biosignature detection of transit spectroscopy with JWST versus direct spectroscopy with ELT/HARMONI. Our findings indicate JWST is more suitable for detecting and characterizing the atmospheres of transiting planet systems such as TRAPPIST-1 that are relatively further away and have smaller angular separations than more nearby nontransiting planets.

     
    more » « less
  5. Abstract

    We used the Immersion GRating Infrared Spectrometer (IGRINS) to determine fundamental parameters for 61 K- and M-type young stellar objects (YSOs) located in the Ophiuchus and Upper Scorpius star-forming regions. We employed synthetic spectra and a Markov chain Monte Carlo approach to fit specificK-band spectral regions and determine the photospheric temperature (T), surface gravity (logg), magnetic field strength (B), projected rotational velocity (vsini), andK-band veiling (rK). We determinedBfor ∼46% of our sample. Stellar parameters were compared to the results from Taurus-Auriga and the TW Hydrae association presented in Paper I of this series. We classified all the YSOs in the IGRINS survey with infrared spectral indices from Two Micron All Sky Survey and Wide-field Infrared Survey Explorer photometry between 2 and 24μm. We found that Class II YSOs typically have lowerloggandvsini, similarB, and higherK-band veiling than their Class III counterparts. Additionally, we determined the stellar parameters for a sample of K and M field stars also observed with IGRINS. We have identified intrinsic similarities and differences at different evolutionary stages with our homogeneous determination of stellar parameters in the IGRINS YSO survey. Consideringloggas a proxy for age, we found that the Ophiuchus and Taurus samples have a similar age. We also find that Upper Scorpius and TWA YSOs have similar ages, and are more evolved than Ophiuchus/Taurus YSOs.

     
    more » « less