skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The IGRINS YSO Survey. III. Stellar Parameters of Pre-main-sequence Stars in Ophiuchus and Upper Scorpius
Abstract We used the Immersion GRating Infrared Spectrometer (IGRINS) to determine fundamental parameters for 61 K- and M-type young stellar objects (YSOs) located in the Ophiuchus and Upper Scorpius star-forming regions. We employed synthetic spectra and a Markov chain Monte Carlo approach to fit specificK-band spectral regions and determine the photospheric temperature (T), surface gravity ( log g ), magnetic field strength (B), projected rotational velocity ( v sin i ), andK-band veiling (rK). We determinedBfor ∼46% of our sample. Stellar parameters were compared to the results from Taurus-Auriga and the TW Hydrae association presented in Paper I of this series. We classified all the YSOs in the IGRINS survey with infrared spectral indices from Two Micron All Sky Survey and Wide-field Infrared Survey Explorer photometry between 2 and 24μm. We found that Class II YSOs typically have lower log g and v sin i , similarB, and higherK-band veiling than their Class III counterparts. Additionally, we determined the stellar parameters for a sample of K and M field stars also observed with IGRINS. We have identified intrinsic similarities and differences at different evolutionary stages with our homogeneous determination of stellar parameters in the IGRINS YSO survey. Considering log g as a proxy for age, we found that the Ophiuchus and Taurus samples have a similar age. We also find that Upper Scorpius and TWA YSOs have similar ages, and are more evolved than Ophiuchus/Taurus YSOs.  more » « less
Award ID(s):
1908892
PAR ID:
10392920
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
943
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 49
Size(s):
Article No. 49
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a direct imaging study of V892 Tau, a young Herbig Ae/Be star with a close-in stellar companion and circumbinary disk. Our observations consist of images acquired via Keck II/NIRC2 with nonredundant masking and the pyramid wavefront sensor at K band (2.12μm) and L band (3.78μm). Sensitivity to low-mass accreting companions and cool disk material is high at L band, while complimentary observations at K band probe hotter material with higher angular resolution. These multiwavelength, multiepoch data allow us to differentiate the secondary stellar emission from disk emission and deeply probe the structure of the circumbinary disk at small angular separations. We constrain architectural properties of the system by fitting geometric disk and companion models to the K - and L -band data. From these models, we constrain the astrometric and photometric properties of the stellar binary and update the orbit, placing the tightest estimates to date on the V892 Tau orbital parameters. We also constrain the geometric structure of the circumbinary disk, and resolve a circumprimary disk for the first time. 
    more » « less
  2. Abstract Objective.In vivoimaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.Approach. In this study, we analyze the anisotropic mechanical response of calf muscles using MRE with a transversely isotropic, nonlinear inversion algorithm (TI-NLI) to investigate the role of muscle fiber stiffening under load. We estimate anisotropic material parameters including fiber shear stiffness ( μ 1 ), substrate shear stiffness ( μ 2 ), shear anisotropy ( ϕ ), and tensile anisotropy ( ζ ) of the gastrocnemius muscle in response to both passive and active tension.Main results. In passive tension, we found a significant increase in μ 1 , ϕ , and ζ with increasing muscle length. While in active tension, we observed increasing μ 2 and decreasing ϕ and ζ during active dorsiflexion and plantarflexion—indicating less anisotropy—with greater effects when the muscles act as agonist.Significance. The study demonstrates the ability of this anisotropic MRE method to capture the multifaceted mechanical response of skeletal muscle to tissue loading from muscle lengthening and contraction. 
    more » « less
  3. Abstract The growth of supermassive black holes is strongly linked to their galaxies. It has been shown that the population mean black hole accretion rate ( BHAR ¯ ) primarily correlates with the galaxy stellar mass (M) and redshift for the general galaxy population. This work aims to provide the best measurements of BHAR ¯ as a function ofMand redshift over ranges of 109.5<M< 1012Mandz< 4. We compile an unprecedentedly large sample with 8000 active galactic nuclei (AGNs) and 1.3 million normal galaxies from nine high-quality survey fields following a wedding cake design. We further develop a semiparametric Bayesian method that can reasonably estimate BHAR ¯ and the corresponding uncertainties, even for sparsely populated regions in the parameter space. BHAR ¯ is constrained by X-ray surveys sampling the AGN accretion power and UV-to-infrared multiwavelength surveys sampling the galaxy population. Our results can independently predict the X-ray luminosity function (XLF) from the galaxy stellar mass function (SMF), and the prediction is consistent with the observed XLF. We also try adding external constraints from the observed SMF and XLF. We further measure BHAR ¯ for star-forming and quiescent galaxies and show that star-forming BHAR ¯ is generally larger than or at least comparable to the quiescent BHAR ¯
    more » « less
  4. Abstract We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,f, used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (caramel) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations betweenfand other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficient log 10 ( f mean , σ ) and black-hole mass, (ii) marginal evidence for a similar correlation between log 10 ( f rms , σ ) and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness with log 10 ( f mean , FWHM ) and log 10 ( f rms , FWHM ) , and (iv) marginal evidence for an anticorrelation of inclination angle with log 10 ( f mean , FWHM ) , log 10 ( f rms , σ ) , and log 10 ( f mean , σ ) . Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum, log 10 ( FWHM / σ ) rms , and the virial coefficient, log 10 ( f rms , σ ) , and investigate how BLR properties might be related to line-profile shape usingcaramelmodels. 
    more » « less
  5. Abstract In the theory of protoplanetary disk turbulence, a widely adopted ansatz, or assumption, is that the turnover frequency of the largest turbulent eddy, ΩL, is the local Keplerian frequency ΩK. In terms of the standard dimensionless Shakura–Sunyaevαparameter that quantifies turbulent viscosity or diffusivity, this assumption leads to characteristic length and velocity scales given respectively by α H and α c , in whichHandcare the local gas scale height and sound speed. However, this assumption is not applicable in cases when turbulence is forced numerically or driven by some natural processes such as vertical shear instability. Here, we explore the more general case where ΩL≥ ΩKand show that, under these conditions, the characteristic length and velocity scales are respectively α / R H and α R c , where R Ω L / Ω K is twice the Rossby number. It follows that α = α ˜ / R , where α ˜ c is the root-mean-square average of the turbulent velocities. Properly allowing for this effect naturally explains the reduced particle scale heights produced in shearing box simulations of particles in forced turbulence, and it may help with interpreting recent edge-on disk observations; more general implications for observations are also presented. For R > 1 , the effective particle Stokes numbers are increased, which has implications for particle collision dynamics and growth, as well as for planetesimal formation. 
    more » « less