skip to main content


Title: The IGRINS YSO Survey. III. Stellar Parameters of Pre-main-sequence Stars in Ophiuchus and Upper Scorpius
Abstract

We used the Immersion GRating Infrared Spectrometer (IGRINS) to determine fundamental parameters for 61 K- and M-type young stellar objects (YSOs) located in the Ophiuchus and Upper Scorpius star-forming regions. We employed synthetic spectra and a Markov chain Monte Carlo approach to fit specificK-band spectral regions and determine the photospheric temperature (T), surface gravity (logg), magnetic field strength (B), projected rotational velocity (vsini), andK-band veiling (rK). We determinedBfor ∼46% of our sample. Stellar parameters were compared to the results from Taurus-Auriga and the TW Hydrae association presented in Paper I of this series. We classified all the YSOs in the IGRINS survey with infrared spectral indices from Two Micron All Sky Survey and Wide-field Infrared Survey Explorer photometry between 2 and 24μm. We found that Class II YSOs typically have lowerloggandvsini, similarB, and higherK-band veiling than their Class III counterparts. Additionally, we determined the stellar parameters for a sample of K and M field stars also observed with IGRINS. We have identified intrinsic similarities and differences at different evolutionary stages with our homogeneous determination of stellar parameters in the IGRINS YSO survey. Consideringloggas a proxy for age, we found that the Ophiuchus and Taurus samples have a similar age. We also find that Upper Scorpius and TWA YSOs have similar ages, and are more evolved than Ophiuchus/Taurus YSOs.

 
more » « less
Award ID(s):
1908892
NSF-PAR ID:
10392920
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
943
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 49
Size(s):
["Article No. 49"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present measurements of the rest-frame UV spectral slope,β, for a sample of 36 faint star-forming galaxies atz∼ 9–16 discovered in one of the deepest JWST NIRCam surveys to date, the Next Generation Deep Extragalactic Exploratory Public Survey. We use robust photometric measurements for UV-faint galaxies (down toMUV∼ −16), originally published in Leung et al., and measure values of the UV spectral slope via photometric power-law fitting to both the observed photometry and stellar population models obtained through spectral energy distribution (SED) fitting withBagpipes. We obtain a median and 68% confidence interval forβfrom photometric power-law fitting ofβPL=2.70.5+0.5and from SED fitting,βSED=2.30.1+0.2for the full sample. We show that when only two to three photometric detections are available, SED fitting has a lower scatter and reduced biases than photometric power-law fitting. We quantify this bias and find that after correction the medianβSED,corr=2.50.2+0.2. We measure physical properties for our galaxies withBagpipesand find that our faint (MUV=18.10.9+0.7) sample is low in mass (log[M*/M]=7.70.5+0.5), fairly dust-poor (Av=0.10.1+0.2mag), and modestly young (log[age]=7.80.8+0.2yr) with a median star formation rate oflog(SFR)=0.30.4+0.4Myr1. We find no strong evidence for ultrablue UV spectral slopes (β∼ −3) within our sample, as would be expected for exotically metal-poor (Z/Z< 10−3) stellar populations with very high Lyman continuum escape fractions. Our observations are consistent with model predictions that galaxies of these stellar masses atz∼ 9–16 should have only modestly low metallicities (Z/Z∼ 0.1–0.2).

     
    more » « less
  2. Abstract

    The stellar initial mass function (IMF) is a fundamental property in the measurement of stellar masses and galaxy star formation histories. In this work, we focus on the most massive galaxies in the nearby universelog(M/M)>11.2. We obtain high-quality Magellan/LDSS-3 long-slit spectroscopy with a wide wavelength coverage of 0.4–1.01μm for 41 early-type galaxies (ETGs) in the MASSIVE survey and derive high signal-to-noise spectra within an aperture ofRe/8. Using detailed stellar synthesis models, we constrain the elemental abundances and stellar IMF of each galaxy through full spectral modeling. All the ETGs in our sample have an IMF that is steeper than a Milky Way (Kroupa) IMF. The best-fit IMF mismatch parameter,αIMF= (M/L)/(M/L)MW, ranges from 1.1 to 3.1, with an average of 〈αIMF〉 = 1.84, suggesting that on average, the IMF is more bottom heavy than Salpeter. Comparing the estimated stellar masses with the dynamical masses, we find that most galaxies have stellar masses that are smaller than their dynamical masses within the 1σuncertainty. We complement our sample with lower-mass galaxies from the literature and confirm thatlog(αIMF)is positively correlated withlog(σ),log(M), andlog(Mdyn). From the combined sample, we show that the IMF in the centers of more massive ETGs is more bottom heavy. In addition, we find thatlog(αIMF)is positively correlated with both [Mg/Fe] and the estimated total metallicity [Z/H]. We find suggestive evidence that the effective stellar surface density ΣKroupamight be responsible for the variation ofαIMF. We conclude thatσ, [Mg/Fe], and [Z/H] are the primary drivers of the global stellar IMF variation.

     
    more » « less
  3. Abstract

    We analyze pre-explosion near- and mid-infrared (IR) imaging of the site of SN 2023ixf in the nearby spiral galaxy M101 and characterize the candidate progenitor star. The star displays compelling evidence of variability with a possible period of ≈1000 days and an amplitude of Δm≈ 0.6 mag in extensive monitoring with the Spitzer Space Telescope since 2004, likely indicative of radial pulsations. Variability consistent with this period is also seen in the near-IRJandKsbands between 2010 and 2023, up to just 10 days before the explosion. Beyond the periodic variability, we do not find evidence for any IR-bright pre-supernova outbursts in this time period. The IR brightness (MKs=10.7mag) and color (JKs= 1.6 mag) of the star suggest a luminous and dusty red supergiant. Modeling of the phase-averaged spectral energy distribution (SED) yields constraints on the stellar temperature (Teff=35001400+800K) and luminosity (logL/L=5.1±0.2). This places the candidate among the most luminous Type II supernova progenitors with direct imaging constraints, with the caveat that many of these rely only on optical measurements. Comparison with stellar evolution models gives an initial mass ofMinit= 17 ± 4M. We estimate the pre-supernova mass-loss rate of the star between 3 and 19 yr before explosion from the SED modeling atṀ3×105to 3 × 10−4Myr−1for an assumed wind velocity ofvw= 10 km s−1, perhaps pointing to enhanced mass loss in a pulsation-driven wind.

     
    more » « less
  4. Abstract

    The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Stellar Library (MaStar) is a large collection of high-quality empirical stellar spectra designed to cover all spectral types and ideal for use in the stellar population analysis of galaxies observed in the MaNGA survey. The library contains 59,266 spectra of 24,130 unique stars with spectral resolutionR∼ 1800 and covering a wavelength range of 3622–10,354 Å. In this work, we derive five physical parameters for each spectrum in the library: effective temperature (Teff), surface gravity (logg), metallicity ([Fe/H]), microturbulent velocity (log(vmicro)), and alpha-element abundance ([α/Fe]). These parameters are derived with a flexible data-driven algorithm that uses a neural network model. We train a neural network using the subset of 1675 MaStar targets that have also been observed in the Apache Point Observatory Galactic Evolution Experiment (APOGEE), adopting the independently-derived APOGEE Stellar Parameter and Chemical Abundance Pipeline parameters for this reference set. For the regions of parameter space not well represented by the APOGEE training set (7000 ≤T≤ 30,000 K), we supplement with theoretical model spectra. We present our derived parameters along with an analysis of the uncertainties and comparisons to other analyses from the literature.

     
    more » « less
  5. Abstract

    We investigate how cosmic web structures affect galaxy quenching in the IllustrisTNG (TNG100) cosmological simulations by reconstructing the cosmic web within each snapshot using the DisPerSE framework. We measure the comoving distance from each galaxy with stellar masslog(M*/M)8to the nearest node (dnode) and the nearest filament spine (dfil) to study the dependence of both the median specific star formation rate (〈sSFR〉) and the median gas fraction (〈fgas〉) on these distances. We find that the 〈sSFR〉 of galaxies is only dependent on the cosmic web environment atz< 2, with the dependence increasing with time. Atz≤ 0.5,8log(M*/M)<9galaxies are quenched atdnode≲ 1 Mpc, and have significantly suppressed star formation atdfil≲ 1 Mpc, trends driven mostly by satellite galaxies. Atz≤ 1, in contrast to the monotonic drop in 〈sSFR〉 oflog(M*/M)<10galaxies with decreasingdnodeanddfil,log(M*/M)10galaxies—both centrals and satellites—experience an upturn in 〈sSFR〉 atdnode≲ 0.2 Mpc. Much of this cosmic web dependence of star formation activity can be explained by an evolution in 〈fgas〉. Our results suggest that in the past ∼10 Gyr, low-mass satellites are quenched by rapid gas stripping in dense environments near nodes and gradual gas starvation in intermediate-density environments near filaments. At earlier times, cosmic web structures efficiently channeled cold gas into most galaxies. State-of-the-art ongoing spectroscopic surveys such as the Sloan Digital Sky Survey and DESI, as well as those planned with the Subaru Prime Focus Spectrograph, JWST, and Roman, are required to test our predictions against observations.

     
    more » « less