Abstract We present both the observation and the magnetohydrodynamics (MHD) simulation of the M2.4 flare (SOL2017-07-14T02:09) of NOAA active region (AR) 12665 with a goal to identify its initiation mechanism. The observation by the Atmospheric Image Assembly (AIA) on board the Solar Dynamics Observatory (SDO) shows that the major topology of the AR is a sigmoidal configuration associated with a filament/flux rope. A persistent emerging magnetic flux and the rotation of the sunspot in the core region were observed with Magnetic Imager (HMI) on board the SDO on the timescale of hours before and during the flare, which may provide free magnetic energy needed for the flare/coronal mass ejection (CME). A high-lying coronal loop is seen moving outward in AIA EUV passbands, which is immediately followed by the impulsive phase of the flare. We perform an MHD simulation using the potential magnetic field extrapolated from the measured pre-flare photospheric magnetic field as initial conditions and adopting the observed sunspot rotation and flux emergence as the driving boundary conditions. In our simulation, a sigmoidal magnetic structure and an overlying magnetic flux rope (MFR) form as a response to the imposed sunspot rotation, and the MFR rises to erupt like a CME. These simulation results in good agreement with the observation suggest that the formation of the MFR due to the sunspot rotation and the resulting torus and kink instabilities were essential to the initiation of this flare and the associated coronal mass ejection.
more »
« less
The Dependence of Solar Flare Magnitude on sunspot Area During Activity Cycle 24
Abstract We measure the sunspot areas of activity cycle 24 using ten years of continuum images from the Helioseismic and Magnetic Imager, and compare them with the peak flare soft X-ray flux from the Geostationary Operational Environmental Satellite. We find that the sunspot area in our sample is positively correlated with the magnitude of the largest flare they produce. Complex spot groups withβγδ magnetic classification tend to be larger and more likely to produce intense flares. Our findings are qualitatively consistent with previous studies.
more »
« less
- Award ID(s):
- 1848250
- PAR ID:
- 10363290
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- Research Notes of the AAS
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2515-5172
- Format(s):
- Medium: X Size: Article No. 37
- Size(s):
- Article No. 37
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present an investigation of partial filament eruption on 2012 June 17 in the active region NOAA 11504. For the first time, we observed the vertical splitting process during the partial eruption with high-resolution narrowband images at 10830 Å. The active filament was rooted in a smallδ-sunspot of the active region. Particularly, it underwent the partial eruption in three steps, i.e., the precursor, the first eruption, and the second eruption, while the latter two were associated with a C1.0 flare and a C3.9 flare, respectively. During the precursor, slow magnetic reconnection took place between the filament and the adjoining loops that also rooted in theδ-sunspot. The continuous reconnection not only caused the filament to split into three groups of threads vertically but also formed a new filament, which was growing and accompanied brightening took place around the site. Subsequently, the growing filament erupted together with one group splitted threads, resulted in the first eruption. At the beginning of the first eruption, a subsequent magnetic reconnection occurred between the erupting splitted threads and another ambient magnetic loop. After about 3 minutes, the second eruption occurred as a result of the eruption of two larger unstable filaments induced by the magnetic reconnection. The high-resolution observation provides a direct evidence that magnetic reconnection between filament and its ambient magnetic fields could induce the vertical splitting of the filament, resulting in partial eruption.more » « less
-
Abstract We present a unique observation of the X6.4-class flare SOL2024-02-22T22:34 using the Mid-InfraRed Imager (MIRI) at the Goode Solar Telescope. Three ribbon-like flare sources and one unidentified source were detected in MIRI’s two mid-infrared (mid-IR) bands at 5.2 and 8.2μm. The two stronger ribbons displayed maximum mid-IR enhancements of 21% and 18% above quiet-Sun levels and 10% in Helioseismic and Magnetic Imager (HMI) continuum intensity (Ic). The weak ribbon and the unidentified source had maximum mid-IR enhancements of 7% but showed HMI/Icdimmings, instead of excess emissions. Our result suggests that mid-IR emission forms in a higher layer during the flare and is more sensitive to flare heating than HMI/Icemission. The MIRI observations have high temporal resolution (2.6 s cadence in these observations) and show apparent source motions. One flare ribbon extends along weak vertical magnetic-field channels in the sunspot umbra, light bridge, and penumbra, with an approximately 30 s delay between HMI/Icand 8.2μm emissions. Meanwhile, the unidentified source moved at an apparent speed of 130 km s−1from a mixed-polarity area to one flare ribbon with a strong HMI/Icenhancement. We studied available hard X-ray/microwave imaging spectroscopy and used nonlinear force-free field extrapolation modeling to identify flare structures. The observational evidence strongly favors the chromospheric origin of the unidentified mid-IR source. Comparison with the X1.0 flare SOL2022-10-02T20:25 indicates that the total amount of high-energy electron (>60 keV) flux density is a key factor in determining the total brightening area and the maximum intensity enhancement in HMI/Icemissions.more » « less
-
Abstract We present observations and analysis of an eruptive M1.5 flare (SOL2014-08-01T18:13) in NOAA active region (AR) 12127, characterized by three flare ribbons, a confined filament between ribbons, and rotating sunspot motions as observed by the Solar Dynamics Observatory. The potential field extrapolation model shows a magnetic topology involving two intersecting quasi-separatrix layers (QSLs) forming a hyperbolic flux tube (HFT), which constitutes the fishbone structure for the three-ribbon flare. Two of the three ribbons show separation from each other, and the third ribbon is rather stationary at the QSL footpoints. The nonlinear force-free field extrapolation model implies the presence of a magnetic flux rope (MFR) structure between the two separating ribbons, which was unclear in the observation. This suggests that the standard reconnection scenario for eruptive flares applies to the two ribbons, and the QSL reconnection for the third ribbon. We find rotational flows around the sunspot, which may have caused the eruption by weakening the downward magnetic tension of the MFR. The confined filament is located in the region of relatively strong strapping field. The HFT topology and the accumulation of reconnected magnetic flux in the HFT may play a role in holding it from eruption. This eruption scenario differs from the one typically known for circular ribbon flares, which is mainly driven by a successful inside-out eruption of filaments. Our results demonstrate the diversity of solar magnetic eruption paths that arises from the complexity of the magnetic configuration.more » « less
-
Abstract Three-minute oscillations are a common phenomenon in the solar chromosphere above a sunspot. Oscillations can be affected by the energy release process related to solar flares. In this paper, we report on an enhanced oscillation in flare event SOL2012-07-05T21:42 with a period of around 3 minutes that occurred at the location of a flare ribbon at a sunspot umbral–penumbral boundary and was observed in both chromospheric and coronal passbands. An analysis of this oscillation was carried out using simultaneous ground-based observations from the Goode Solar Telescope at the Big Bear Solar Observatory and space-based observations from the Solar Dynamics Observatory. A frequency shift was observed before and after the flare, with the running penumbral wave that was present with a period of about 200 s before the flare coexisting with a strengthened oscillation with a period of 180 s at the same locations after the flare. We also found a phase difference between different passbands, with the oscillation occurring from high-temperature to low-temperature passbands. Theoretically, the change in frequency was strongly dependent on the variation of the inclination of the magnetic field and the chromospheric temperature. Following an analysis of the properties of the region, we found the frequency change was caused by a slight decrease of the magnetic inclination angle with respect to the local vertical. In addition, we suggest that the enhanced 3 minute oscillation was related to the additional heating, maybe due to the downflow, during the EUV late phase of the flare.more » « less
An official website of the United States government
