skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1848250

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stellar flares occasionally present apeak-bumplight-curve morphology, consisting of an initial impulsive phase followed by a gradual late phase. Analyzing this specific morphology can uncover the underlying physics of stellar flare dynamics, particularly the plasma heating–evaporation–condensation process. While previous studies have mainly examined peak-bump occurrences on M dwarfs, this report extends the investigation to G-, K-, and M-type stars. We utilize the flare catalog published by J. Crowley et al., encompassing 12,597 flares, detected by using Transiting Exoplanet Survey Satellite (TESS) observations. Our analysis identifies 10,142 flares with discernible classical and complex morphology, of which 197 (∼1.9%) exhibit the peak-bump feature. We delve into the statistical properties of these TESS late-phase flares, noting that both the amplitude and FWHM durations of both the peaks and bumps show positive correlations across all source-star spectral types, following a power law with indices 0.69 ± 0.09 and 1.0 ± 0.15, respectively. Additionally, a negative correlation between the flare amplitude and the effective temperature of their host stars is observed. Compared to the other flares in our sample, peak-bump flares tend to have larger and longer initial peak amplitudes and FWHM durations and possess energies ranging from 1031to 1036erg. 
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  2. Abstract Quiet-Sun regions cover most of the Sun's surface; their magnetic fields contribute significantly to solar chromospheric and coronal heating. However, characterizing the magnetic fields of the quiet Sun is challenging due to their weak polarization signal. The 4 m Daniel K. Inouye Solar Telescope (DKIST) is expected to improve our understanding of quiet-Sun magnetism. In this paper, we assess the diagnostic capability of the Diffraction Limited Near Infrared Spectropolarimeter (DL-NIRSP) instrument on DKIST for the energy transport processes in the quiet-Sun photosphere. To this end, we synthesize high-resolution, high-cadence Stokes profiles of the Fei630 nm lines using a realistic magnetohydrodynamic simulation, degrade them to emulate the DKIST/DL-NIRSP observations, and subsequently infer the vector magnetic and velocity fields. For the assessment, we first verify that a widely used flow tracking algorithm, the Differential Affine Velocity Estimator for Vector Magnetograms, works well for estimating the large-scale (>200 km) photospheric velocity fields with these high-resolution data. We then examine how the accuracy of the inferred velocity depends on the temporal resolution. Finally, we investigate the reliability of the Poynting flux estimate and its dependence on the model assumptions. The results suggest that the unsigned Poynting flux, estimated with existing schemes, can account for about 71.4% and 52.6% of the reference ground truth at log τ = 0.0 and log τ = 1 . However, the net Poynting flux tends to be significantly underestimated. The error mainly arises from the underestimated contribution of the horizontal motion. We discuss the implications for DKIST observations. 
    more » « less
  3. Abstract The National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) will provide high-resolution, multiline spectropolarimetric observations that are poised to revolutionize our understanding of the Sun. Given the massive data volume, novel inference techniques are required to unlock its full potential. Here, we provide an overview of our “SPIn4D” project, which aims to develop deep convolutional neural networks (CNNs) for estimating the physical properties of the solar photosphere from DKIST spectropolarimetric observations. We describe the magnetohydrodynamic (MHD) modeling and the Stokes profile synthesis pipeline that produce the simulated output and input data, respectively. These data will be used to train a set of CNNs that can rapidly infer the four-dimensional MHD state vectors by exploiting the spatiotemporally coherent patterns in the Stokes profile time series. Specifically, our radiative MHD model simulates the small-scale dynamo actions that are prevalent in quiet-Sun and plage regions. Six cases with different mean magnetic fields have been explored; each case covers six solar-hours, totaling 109 TB in data volume. The simulation domain covers at least 25 × 25 × 8 Mm, with 16 × 16 × 12 km spatial resolution, extending from the upper convection zone up to the temperature minimum region. The outputs are stored at a 40 s cadence. We forward model the Stokes profile of two sets of Feilines at 630 and 1565 nm, which will be simultaneously observed by DKIST and can better constrain the parameter variations along the line of sight. The MHD model output and the synthetic Stokes profiles are publicly available, with 13.7 TB in the initial release. 
    more » « less
  4. Abstract M dwarf flares observed by the Transiting Exoplanet Survey Satellite (TESS) sometimes exhibit apeak-bumplight-curve morphology, characterized by a secondary, gradual peak well after the main, impulsive peak. A similarlate phaseis frequently detected in solar flares observed in the extreme ultraviolet from longer hot coronal loops distinct from the impulsive flare structures. White-light emission has also been observed in off-limb solar flare loops. Here, we perform a suite of one-dimensional hydrodynamic loop simulations for M dwarf flares inspired by these solar examples. Our results suggest that coronal plasma condensation following impulsive flare heating can yield high electron number density in the loop, allowing it to contribute significantly to the optical light curves via free-bound and free–free emission mechanisms. Our simulation results qualitatively agree with TESS observations: the longer evolutionary timescale of coronal loops produces a distinct, secondary emission peak; its intensity increases with the injected flare energy. We argue that coronal plasma condensation is a possible mechanism for the TESS late-phase flares. 
    more » « less
  5. Abstract Delta (δ) sunspots sometimes host fast photospheric flows along the central magnetic polarity inversion line (PIL). Here we study the strong Doppler shift signature in the central penumbral light bridge of solar active region NOAA 12673. Observations from the Helioseismic and Magnetic Imager (HMI) indicate highly sheared and strong magnetic fields. Large Doppler shifts up to 3.2 km s−1appeared during the formation of the light bridge and persisted for about 16 hr. A new velocity estimator, called DAVE4VMwDV, reveals fast converging and shearing motion along the PIL from HMI vector magnetograms, and recovers the observed Doppler signal much better than an old version of the algorithm. The inferred velocity vectors are largely (anti-)parallel to the inclined magnetic fields, suggesting that the observed Doppler shift contains a significant contribution from the projected field-aligned flows. High-resolution observations from the Hinode/Spectro-Polarimeter further exhibit a clear correlation between the Doppler velocity and the cosine of the magnetic inclination, which is in agreement with HMI results and consistent with a field-aligned flow of about 9.6 km s−1. The complex Stokes profiles suggest significant gradients of physical variables along the line of sight. We discuss the implications on theδ-spot magnetic structure and the flow-driving mechanism. 
    more » « less
  6. Abstract We measure the sunspot areas of activity cycle 24 using ten years of continuum images from the Helioseismic and Magnetic Imager, and compare them with the peak flare soft X-ray flux from the Geostationary Operational Environmental Satellite. We find that the sunspot area in our sample is positively correlated with the magnitude of the largest flare they produce. Complex spot groups withβγδ magnetic classification tend to be larger and more likely to produce intense flares. Our findings are qualitatively consistent with previous studies. 
    more » « less
  7. Abstract Understanding the magnetic structure of filament channels is difficult but essential for identifying the mechanism (s) responsible for solar eruptions. In this paper we characterize the magnetic field in a well-observed filament channel with two independent methods, prominence seismology and magnetohydrodynamics flux-rope modeling, and compare the results. In 2014 May and June, active region 12076 exhibited a complex of filaments undergoing repeated oscillations over the course of 12 days. We measure the oscillation periods in the region with both Global Oscillation Network Group Hαand Solar Dynamics Observatory (SDO) Advanced Imaging Assembly EUV images, and then utilize the pendulum model of large-amplitude longitudinal oscillations to calculate the radius of curvature of the fields supporting the oscillating plasma from the derived periods. We also employ the regularized Biot–Savart laws formalism to construct a flux-rope model of the field of the central filament in the region based on an SDO Helioseismic and Magnetic Imager magnetogram. We compare the estimated radius of curvature, location, and angle of the magnetic field in the plane of the sky derived from the observed oscillations with the corresponding magnetic-field properties extracted from the flux-rope model. We find that the two models are broadly consistent, but detailed comparisons of the model and specific oscillations often differ. Model observation comparisons such as these are important for advancing our understanding of the structure of filament channels. 
    more » « less
  8. Abstract A bald patch (BP) is a magnetic topological feature where U-shaped field lines turn tangent to the photosphere. Field lines threading the BP trace a separatrix surface where reconnection preferentially occurs. Here we study the evolution of multiple, strong-field BPs in AR 12673 during the most intense, X9.3 flare of solar cycle 24. The central BP, located between the initial flare ribbons, largely “disintegrated” within 35 minutes. The more remote, southern BP survived. The disintegration manifested as a 9° rotation of the median shear angle; the perpendicular component of the horizontal field (with respect to the polarity inversion line) changed sign. The parallel component exhibited a step-wise, permanent increase of 1 kG, consistent with previous observations of the flare-related “magnetic imprint.” The observations suggest that magnetic reconnection during a major eruption may involve entire BP separatrices, leading to a change of magnetic topology from BPs to sheared arcades. 
    more » « less
  9. Abstract Violent solar flares and coronal mass ejections (CMEs) are magnetic phenomena. However, how magnetic fields reconnecting in the flare differ from nonflaring magnetic fields remains unclear owing to the lack of studies of the flare magnetic properties. Here we present a first statistical study of flaring (highlighted by flare ribbons) vector magnetic fields in the photosphere. Our systematic approach allows us to describe the key physical properties of solar flare magnetism, including distributions of magnetic flux, magnetic shear, vertical current, and net current over flaring versus nonflaring parts of the active region (AR), and compare these with flare/CME properties. Our analysis suggests that while flares are guided by the physical properties that scale with AR size, like the total amount of magnetic flux that participates in the reconnection process and the total current (extensive properties), CMEs are guided by mean properties, like the fraction of the AR magnetic flux that participates (intensive property), with little dependence on the amount of shear at the polarity inversion line (PIL) or the net current. We find that the nonneutralized current is proportional to the amount of shear at the PIL, providing direct evidence that net vertical currents are formed as a result of any mechanism that could generate magnetic shear along the PIL. We also find that eruptive events tend to have smaller PIL fluxes and larger magnetic shears than confined events. Our analysis provides a reference for more realistic solar and stellar flare models. The database is available online and can be used for future quantitative studies of flare magnetism. 
    more » « less
  10. Abstract With the aim of investigating how the magnetic field in solar active regions (ARs) controls flare activity, i.e., whether a confined or eruptive flare occurs, we analyze 106 flares of Geostationary Operational Environmental Satellite class ≥M1.0 during 2010–2019. We calculate mean characteristic twist parameters α FPIL within the “flaring polarity inversion line” region and α HFED within the area of high photospheric magnetic free energy density, which both provide measures of the nonpotentiality of the AR core region. Magnetic twist is thought to be related to the driving force of electric current-driven instabilities, such as the helical kink instability. We also calculate total unsigned magnetic flux (Φ AR ) of ARs producing the flare, which describes the strength of the background field confinement. By considering both the constraining effect of background magnetic fields and the magnetic nonpotentiality of ARs, we propose a new parameter α /Φ AR to measure the probability for a large flare to be associated with a coronal mass ejection (CME). We find that in about 90% of eruptive flares, α FPIL /Φ AR and α HFED /Φ AR are beyond critical values (2.2 × 10 −24 and 3.2 × 10 −24 Mm −1 Mx −1 ), whereas they are less than critical values in ∼80% of confined flares. This indicates that the new parameter α /Φ AR is well able to distinguish eruptive flares from confined flares. Our investigation suggests that the relative measure of magnetic nonpotentiality within the AR core over the restriction of the background field largely controls the capability of ARs to produce eruptive flares. 
    more » « less