skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interplay between core and shell in a RbCoFe@RbNiCo Prussian blue analogue spin transition heterostructure
A series of core–shell heterostructures consisting of the spin transition Prussian blue analogue Rb a Co b [Fe(CN) 6 ] c · m H 2 O (RbCoFe–PBA) as core with different shell thicknesses of K j Ni k [Co(CN) 6 ] l · n H 2 O (KNiCo-PBA) has been prepared and studied as the cores undergo both thermal and light-induced phase changes. Synchrotron powder diffraction and SQUID magnetometry indicate the intersite cooperativity of the charge transfer coupled spin transition (CTCST) in the RbCoFe–PBA core decreases while the extent of lattice contraction is reduced relative to the uncoated particles. Isothermal relaxation measurements from the photo-induced high-spin (HS) state to the low-spin (LS) ground state of the RbCoFe–PBA core show that the energy barrier of the HS to LS transition dramatically decreases when adding the KNiCo-PBA shells, becoming smaller when the shell is thicker. The RbCoFe–PBA@KNiCo-PBA series is unique because the lattice parameter of KNiCo-PBA grown on the high-spin RbCoFe–PBA core particle is expanded relative to its equilibrium lattice parameter. As a result, the lattice mismatch is relieved during the spin transition. Analysis of the structural microstrain in both core and shell during the CTCST process reveals the different mechanisms by which the heterostructure accommodates the strain.  more » « less
Award ID(s):
1904596 1708410
PAR ID:
10283101
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
ISSN:
2050-7526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present LDA + U sc calculations of high-spin (HS) and low-spin (LS) states in ferropericlase (fp) with an iron concentration of 18.75%. The Hubbard parameter U is determined self-consistently with structures optimized at arbitrary pressures. We confirm a strong dependence of U on the pressure and spin state. Static calculations confirm that the antiferromagnetic configuration is more stable than the ferromagnetic one in the HS state, consistent with low-temperature measurements. Phonon calculations guarantee the dynamical stability of HS and LS states throughout the pressure range of the Earth mantle. Compression curves for HS and LS states agree well with experiments. Using a non-ideal mixing model for the HS to LS states solid solution, we obtain a crossover starting at ∼45 GPa at room temperature and considerably broader than previous results. The spin-crossover phase diagram is calculated, including vibrational, magnetic, electronic, and non-ideal HS–LS entropic contributions. Our results suggest the mixed-spin state predominates in fp in most of the lower mantle. 
    more » « less
  2. Using transition metal ions for spin-based applications, such as electron paramagnetic resonance imaging (EPRI) or quantum computation, requires a clear understanding of how local chemistry influences spin properties. Herein we report a series of four ionic complexes to provide the first systematic study of one aspect of local chemistry on the V( iv ) spin – the counterion. To do so, the four complexes (Et 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 1 ), ( n -Bu 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 2 ), ( n -Hex 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 3 ), and ( n -Oct 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 4 ) were probed by EPR spectroscopy in solid state and solution. Room temperature, solution X-band ( ca. 9.8 GHz) continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy revealed an increasing linewidth with larger cations, likely a counterion-controlled tumbling in solution via ion pairing. In the solid state, variable-temperature (5–180 K) X-band ( ca. 9.4 GHz) pulsed EPR studies of 1–4 in o -terphenyl glass demonstrated no effect on spin–lattice relaxation times ( T 1 ), indicating little role for the counterion on this parameter. However, the phase memory time ( T m ) of 1 below 100 K is markedly smaller than those of 2–4 . This result is counterintuitive, as 2–4 are relatively richer in 1 H nuclear spin, hence, expected to have shorter T m . Thus, these data suggest an important role for counterion methyl groups on T m , and moreover provide the first instance of a lengthening T m with increasing nuclear spin quantity on a molecule. 
    more » « less
  3. Metastable phases of the photoswitchable molecular magnet K0.3Co[Fe(CN)6]0.77 ⋅  nH2O in sub-micrometer particles have been structurally investigated by synchrotron powder x-ray diffraction (PXRD) measurements. The K0.3Co[Fe(CN)6]0.77 ⋅  nH2O bulk compound (studied here with a sample having average particle size of 500 nm) undergoes a charge transfer coupled spin transition (CTCST), where spin configurations change between a paramagnetic CoII( S = 3/2) –FeIII( S = 1/2) high-temperature (HT) state and a diamagnetic CoIII( S = 0) –FeII( S = 0) low-temperature (LT) state. The bulk compound exhibits a unique intermediate (IM) phase, which corresponds to a mixture of HT and LT spin states that depend on the cooling rate. Several hidden metastable HT states emerge as a function of thermal and photo stimuli, namely: (1) a quench (Q) state generated from the HT state by flash cooling, (2) a LTPX state obtained by photoexcitation from the LT state derived by thermal relaxation from the Q state, and (3) an IMPX state accessed by photo-irradiation from the IM state. A sample with a smaller particle size, 135 nm, is investigated for which the particles are on the scale of the coherent LT domains in the IM phase within the larger 500 nm sample. PXRD studies under controlled thermal and/or optical excitations have clarified that the reduction of the particle size profoundly affects the structural changes associated with the CTCST. The unusual IM state is also observed as segregated domains in the 135 nm particle, but the collective structural transformations are more hindered in small particles. The volume change decreases to 2%–3%, almost half the value found for 500 nm particles (5%–8%), even though the linear thermal expansion coefficients are larger for the smaller particles. Furthermore, photoexcitation from the IM and LT states does not turn into single phases in the smaller particles, presumably because of the multiple interfaces and/or internal stress generated by the coexistence of small CoII–FeIIIand CoIII–FeIIdomains in the lattice. Since the reduced particle size limits cooperativity and domain growth in the lattice, CTCST in the small particle sample becomes less sensitive to external stimuli. 
    more » « less
  4. null (Ed.)
    Spin crossover (SCO) is a phenomenon observed for certain transition metal complexes with electronic configuration 3d4-3d7. The conversion between the low-spin (LS) and high-spin (HS) states is usually driven by a variety of external perturbations, such as temperature, pressure, or light. The switching between the enthalpically preferred LS state and entropically favorable HS state is accompanied by dramatic changes in the metal-ligand bond lengths, unit cell volume, optical absorption spectrum, and magnetic susceptibility.1 These changes make SCO materials suitable for applications in sensors, memory, and display devices. One of the central challenges in the SCO research is to initiate strongly cooperative interactions known to lead to abrupt spin transitions and thermal hysteresis that can be harvested as a memory effect. One of the strategies to enhance the cooperativity is to design SCO complexes with supramolecular interactions such as π-stacking of aromatic fragments or hydrogen bonding.2 In this work, we report syntheses and characterization of heteroleptic complexes of [Fe(tpma)(L)](ClO4)2 (tpma = tris(pyridin-2-ylmethyl)amine) with novel π-extended biimidazole-type ligands (L) bearing 2,3-dimethyl-naphthalene-, 6,7-dimethyl-2,3-diphenyl-quinoxaline, and 2,3-dimethyl-anthracene pendant fragments. Solvent-free naphthalene-functionalized complex [Fe(tpma)(xnap-bim)](ClO4)2 exhibits abrupt spin transition at T1/2 = 127K with a narrow 1 K hysteresis loop. In contrast, polymorph of this complex that contains one interstitial molecules of pyridine exhibits gradual SCO. Anthracene-functionalized complex [Fe(tpma)(anthra-bim)](ClO4)2 also crystallizes as two polymorphs. Structural studies at 100, 230, and 300 K revealed dramatic changes in the N-Fe-N biting angles and Fe-N distances, indicating the occurrence of temperature-induced SCO. Complex [Fe(tpma)(quin-bim)](ClO4)2 (quin-bim = 6,7-dimethyl-2,3-diphenyl-quinoxaline-2,2’-biimidazole) showed only HS state at 100 and 230 K. In the crystal packing the mononuclear cations form stacks along b axis. We discuss how the observed magnetic behavior correlates with changes in the crystal packing and interactions between the pendant aromatic substituents on the aforementioned complexes. 
    more » « less
  5. Co-crystallization of the prominent Fe( ii ) spin-crossover (SCO) cation, [Fe(3-bpp) 2 ] 2+ (3-bpp = 2,6-bis(pyrazol-3-yl)pyridine), with a fractionally charged TCNQ δ − radical anion has afforded a hybrid complex [Fe(3-bpp) 2 ](TCNQ) 3 ·5MeCN (1·5MeCN, where δ = −0.67). The partially desolvated material shows semiconducting behavior, with the room temperature conductivity σ RT = 3.1 × 10 −3 S cm −1 , and weak modulation of conducting properties in the region of the spin transition. The complete desolvation, however, results in the loss of hysteretic behavior and a very gradual SCO that spans the temperature range of 200 K. A related complex with integer-charged TCNQ − anions, [Fe(3-bpp) 2 ](TCNQ) 2 ·3MeCN (2·3MeCN), readily loses the interstitial solvent to afford desolvated complex 2 that undergoes an abrupt and hysteretic spin transition centered at 106 K, with an 11 K thermal hysteresis. Complex 2 also exhibits a temperature-induced excited spin-state trapping (TIESST) effect, upon which a metastable high-spin state is trapped by flash-cooling from room temperature to 10 K. Heating above 85 K restores the ground-state low-spin configuration. An approach to improve the structural stability of such complexes is demonstrated by using a related ligand 2,6-bis(benzimidazol-2′-yl)pyridine (bzimpy) to obtain [Fe(bzimpy) 2 ](TCNQ) 6 ·2Me 2 CO (4) and [Fe(bzimpy) 2 ](TCNQ) 5 ·5MeCN (5), both of which exist as LS complexes up to 400 K and exhibit semiconducting behavior, with σ RT = 9.1 × 10 −2 S cm −1 and 1.8 × 10 −3 S cm −1 , respectively. 
    more » « less