skip to main content

Title: Interplay between core and shell in a RbCoFe@RbNiCo Prussian blue analogue spin transition heterostructure
A series of core–shell heterostructures consisting of the spin transition Prussian blue analogue Rb a Co b [Fe(CN) 6 ] c · m H 2 O (RbCoFe–PBA) as core with different shell thicknesses of K j Ni k [Co(CN) 6 ] l · n H 2 O (KNiCo-PBA) has been prepared and studied as the cores undergo both thermal and light-induced phase changes. Synchrotron powder diffraction and SQUID magnetometry indicate the intersite cooperativity of the charge transfer coupled spin transition (CTCST) in the RbCoFe–PBA core decreases while the extent of lattice contraction is reduced relative to the uncoated particles. Isothermal relaxation measurements from the photo-induced high-spin (HS) state to the low-spin (LS) ground state of the RbCoFe–PBA core show that the energy barrier of the HS to LS transition dramatically decreases when adding the KNiCo-PBA shells, becoming smaller when the shell is thicker. The RbCoFe–PBA@KNiCo-PBA series is unique because the lattice parameter of KNiCo-PBA grown on the high-spin RbCoFe–PBA core particle is expanded relative to its equilibrium lattice parameter. As a result, the lattice mismatch is relieved during the spin transition. Analysis of the structural microstrain in both core and shell during the CTCST process reveals the different mechanisms by more » which the heterostructure accommodates the strain. « less
; ; ;
Award ID(s):
1904596 1708410
Publication Date:
Journal Name:
Journal of Materials Chemistry C
Sponsoring Org:
National Science Foundation
More Like this
  1. Metastable phases of the photoswitchable molecular magnet K0.3Co[Fe(CN)6]0.77 ⋅  nH2O in sub-micrometer particles have been structurally investigated by synchrotron powder x-ray diffraction (PXRD) measurements. The K0.3Co[Fe(CN)6]0.77 ⋅  nH2O bulk compound (studied here with a sample having average particle size of 500 nm) undergoes a charge transfer coupled spin transition (CTCST), where spin configurations change between a paramagnetic CoII( S = 3/2) –FeIII( S = 1/2) high-temperature (HT) state and a diamagnetic CoIII( S = 0) –FeII( S = 0) low-temperature (LT) state. The bulk compound exhibits a unique intermediate (IM) phase, which corresponds to a mixture of HT and LT spin states that depend on the cooling rate. Several hidden metastable HT states emerge as a function of thermal and photo stimuli, namely: (1) a quench (Q) state generated from the HT state by flash cooling, (2) a LTPX state obtained by photoexcitation from the LT state derived by thermal relaxation from the Q state, and (3) an IMPX state accessed by photo-irradiation from the IM state. A sample with a smaller particle size, 135 nm, is investigated for which the particles are on the scale of the coherent LT domains in the IM phase within the larger 500 nm sample. PXRD studies under controlled thermal and/or optical excitations have clarified that themore »reduction of the particle size profoundly affects the structural changes associated with the CTCST. The unusual IM state is also observed as segregated domains in the 135 nm particle, but the collective structural transformations are more hindered in small particles. The volume change decreases to 2%–3%, almost half the value found for 500 nm particles (5%–8%), even though the linear thermal expansion coefficients are larger for the smaller particles. Furthermore, photoexcitation from the IM and LT states does not turn into single phases in the smaller particles, presumably because of the multiple interfaces and/or internal stress generated by the coexistence of small CoII–FeIIIand CoIII–FeIIdomains in the lattice. Since the reduced particle size limits cooperativity and domain growth in the lattice, CTCST in the small particle sample becomes less sensitive to external stimuli.

    « less
  2. Using transition metal ions for spin-based applications, such as electron paramagnetic resonance imaging (EPRI) or quantum computation, requires a clear understanding of how local chemistry influences spin properties. Herein we report a series of four ionic complexes to provide the first systematic study of one aspect of local chemistry on the V( iv ) spin – the counterion. To do so, the four complexes (Et 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 1 ), ( n -Bu 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 2 ), ( n -Hex 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 3 ), and ( n -Oct 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 4 ) were probed by EPR spectroscopy in solid state and solution. Room temperature, solution X-band ( ca. 9.8 GHz) continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy revealed an increasing linewidth with larger cations, likely a counterion-controlled tumbling in solution via ion pairing. In the solid state, variable-temperature (5–180 K) X-band ( ca. 9.4 GHz) pulsed EPR studies of 1–4 in o -terphenyl glass demonstrated no effect onmore »spin–lattice relaxation times ( T 1 ), indicating little role for the counterion on this parameter. However, the phase memory time ( T m ) of 1 below 100 K is markedly smaller than those of 2–4 . This result is counterintuitive, as 2–4 are relatively richer in 1 H nuclear spin, hence, expected to have shorter T m . Thus, these data suggest an important role for counterion methyl groups on T m , and moreover provide the first instance of a lengthening T m with increasing nuclear spin quantity on a molecule.« less
  3. Abstract With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba 3 CoSb 2 O 9 , a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba 2.87 Sr 0.13 CoSb 2 O 9 with Sr doping on non-magnetic Ba 2+ ion sites. The results show that Ba 2.87 Sr 0.13 CoSb 2 O 9 exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120 degree spin structure at zero field with reduced ordered moment as 1.24 μ B /Co; (iii) a series of spin state transitions for both H ∥ ab -plane and H ∥ c -axis. For H ∥ ab -plane, the magnetization plateau feature related to the up–up–down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba 3 CoSb 2 O 9 , which demonstrates that the non-magnetic ion site disorder (the Sr doping) playsmore »a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions.« less
  4. The ternary manganese pnictide phases, MnAs 1− x Sb x , are of interest for magnetic refrigeration and waste heat recovery due to their magnetocaloric properties, maximized at the Curie temperature ( T C ), which varies from 580–240 K, depending on composition. Nanoparticles potentially enable application in microelectronics (cooling) or graded composites that can operate over a wide temperature range, but manganese pnictides are synthetically challenging to realize as discrete nanoparticles and their fundamental magnetic properties have not been extensively studied. Accordingly, colloidal synthesis methods were employed to target discrete MnAs x Sb 1− x nanoparticles ( x = 0.1–0.9) by arrested precipitation reactions of Mn 2 (CO) 10 with (C 6 H 5 ) 3 AsO and (C 6 H 5 ) 3 Sb in coordinating solvents. The MnAs x Sb 1− x particles are spherical in morphology with average diameters 10–13 nm (standard deviations <20% based on transmission electron microscopy analysis). X-Ray fluorescence spectroscopy measurements on ensembles showed that all phases had an excess of Sb relative to the targeted composition, whereas energy dispersive spectroscopic mapping data of single particles revealed that the nanoparticles are inhomogeneous, adopting a core–shell structure, with the amorphous shell rich in Mnmore »and O (and sometimes Sb) while the crystalline core is rich in Mn, As, and Sb. Magnetization measurements of the nanoparticle ensemble demonstrated the presence of both ferromagnetic and paramagnetic phases. By combining the magnetization measurements with precision chemical mapping and simple modeling, we were able to unambiguously attribute ferromagnetism to the MnAs x Sb 1− x crystalline core, whereas paramagnetism was attributed to the amorphous shell. Magnetization measurements at variable temperatures were used to determine the superparamagnetic transition of the nanoparticles, although for some compositions and particle sizes the blocking temperature exceeded room temperature. Preliminary magnetic studies also revealed a conventional dependence between core size and coercivity, in spite of variable compositions of the nanoparticles, an unexpected result.« less
  5. Spin crossover (SCO) is a phenomenon observed for certain transition metal complexes with electronic configuration 3d4-3d7. The conversion between the low-spin (LS) and high-spin (HS) states is usually driven by a variety of external perturbations, such as temperature, pressure, or light. The switching between the enthalpically preferred LS state and entropically favorable HS state is accompanied by dramatic changes in the metal-ligand bond lengths, unit cell volume, optical absorption spectrum, and magnetic susceptibility.1 These changes make SCO materials suitable for applications in sensors, memory, and display devices. One of the central challenges in the SCO research is to initiate strongly cooperative interactions known to lead to abrupt spin transitions and thermal hysteresis that can be harvested as a memory effect. One of the strategies to enhance the cooperativity is to design SCO complexes with supramolecular interactions such as π-stacking of aromatic fragments or hydrogen bonding.2 In this work, we report syntheses and characterization of heteroleptic complexes of [Fe(tpma)(L)](ClO4)2 (tpma = tris(pyridin-2-ylmethyl)amine) with novel π-extended biimidazole-type ligands (L) bearing 2,3-dimethyl-naphthalene-, 6,7-dimethyl-2,3-diphenyl-quinoxaline, and 2,3-dimethyl-anthracene pendant fragments. Solvent-free naphthalene-functionalized complex [Fe(tpma)(xnap-bim)](ClO4)2 exhibits abrupt spin transition at T1/2 = 127K with a narrow 1 K hysteresis loop. In contrast, polymorph of this complex thatmore »contains one interstitial molecules of pyridine exhibits gradual SCO. Anthracene-functionalized complex [Fe(tpma)(anthra-bim)](ClO4)2 also crystallizes as two polymorphs. Structural studies at 100, 230, and 300 K revealed dramatic changes in the N-Fe-N biting angles and Fe-N distances, indicating the occurrence of temperature-induced SCO. Complex [Fe(tpma)(quin-bim)](ClO4)2 (quin-bim = 6,7-dimethyl-2,3-diphenyl-quinoxaline-2,2’-biimidazole) showed only HS state at 100 and 230 K. In the crystal packing the mononuclear cations form stacks along b axis. We discuss how the observed magnetic behavior correlates with changes in the crystal packing and interactions between the pendant aromatic substituents on the aforementioned complexes.« less