skip to main content


Title: Mean Curvature Flow in Null Hypersurfaces and the Detection of MOTS
Abstract

We study the mean curvature flow in 3-dimensional null hypersurfaces. In a spacetime a hypersurface is called null, if its induced metric is degenerate. The speed of the mean curvature flow of spacelike surfaces in a null hypersurface is the projection of the codimension-two mean curvature vector onto the null hypersurface. We impose fairly mild conditions on the null hypersurface. Then for an outer un-trapped initial surface, a condition which resembles the mean-convexity of a surface in Euclidean space, we prove that the mean curvature flow exists for all times and converges smoothly to a marginally outer trapped surface (MOTS). As an application we obtain the existence of a global foliation of the past of an outermost MOTS, provided the null hypersurface admits an un-trapped foliation asymptotically.

 
more » « less
NSF-PAR ID:
10363349
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Communications in Mathematical Physics
Volume:
390
Issue:
3
ISSN:
0010-3616
Page Range / eLocation ID:
p. 1149-1173
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We study the phenomenon of Type-II curvature blow-up in mean curvature flows of rotationally symmetric noncompact embedded hypersurfaces. Using analytic techniques based on formal matched asymptotics and the construction of upper and lower barrier solutions enveloping formal solutions with prescribed behavior, we show that for each initial hypersurface considered, a mean curvature flow solution exhibits the following behavior near the “vanishing” time T : (1) The highest curvature concentrates at the tip of the hypersurface (an umbilic point), and for each choice of the parameter {\gamma>\frac{1}{2}} , there is a solution with the highest curvature blowing up at the rate {(T-t)^{{-(\gamma+\frac{1}{2})}}} . (2) In a neighborhood of the tip, the solution converges to a translating soliton which is a higher-dimensional analogue of the “Grim Reaper” solution for the curve-shortening flow. (3) Away from the tip, the flow surface approaches a collapsing cylinder at a characteristic rate dependent on the parameter γ. 
    more » « less
  2. Abstract

    While it is well known from examples that no interesting “halfspace theorem” holds for properly immersed $n$-dimensional self-translating mean curvature flow solitons in Euclidean space $\mathbb{R}^{n+1}$, we show that they must all obey a general “bi-halfspace theorem” (aka “wedge theorem”): two transverse vertical halfspaces can never contain the same such hypersurface. The same holds for any infinite end. The proofs avoid the typical methods of nonlinear barrier construction for the approach via distance functions and the Omori–Yau maximum principle. As an application we classify the closed convex hulls of all properly immersed (possibly with compact boundary) $n$-dimensional mean curvature flow self-translating solitons $\Sigma ^n$ in ${\mathbb{R}}^{n+1}$ up to an orthogonal projection in the direction of translation. This list is short, coinciding with the one given by Hoffman–Meeks in 1989 for minimal submanifolds: all of ${\mathbb{R}}^{n}$, halfspaces, slabs, hyperplanes, and convex compacts in ${\mathbb{R}}^{n}$.

     
    more » « less
  3. Abstract We present a numerical study of the local stability of mean curvature flow (MCF) of rotationally symmetric, complete noncompact hypersurfaces with type-II curvature blowup. Our numerical analysis employs a novel overlap method that constructs ‘numerically global’ (i.e., with spatial domain arbitrarily large but finite) flow solutions with initial data covering analytically distinct regions. Our numerical results show that for certain prescribed families of perturbations, there are two classes of initial data that lead to distinct behaviours under MCF. Firstly, there is a ‘near’ class of initial data which lead to the same singular behaviour as an unperturbed solution; in particular, the curvature at the tip of the hypersurface blows up at a type-II rate no slower than ( T − t ) −1 . Secondly, there is a ‘far’ class of initial data which lead to solutions developing a local type-I nondegenerate neckpinch under MCF. These numerical findings further suggest the existence of a ‘critical’ class of initial data which conjecturally lead to MCF of noncompact hypersurfaces forming local type-II degenerate neckpinches with the highest curvature blowup rate strictly slower than ( T − t ) −1 . 
    more » « less
  4. Abstract We prove the existence of asymptotically hyperbolic solutions to the vacuum Einstein constraint equations with a marginally outer trapped boundary of positive mean curvature, using the constant mean curvature conformal method. As an application of this result, we verify the Penrose inequality for certain perturbations of Schwarzschild Anti-de Sitter black hole initial data. 
    more » « less
  5. We prove that, for a generic set of smooth prescription functions h on a closed ambient manifold, there always exists a nontrivial, smooth, closed hypersurface of prescribed mean curvature h. The solution is either an embedded minimal hypersurface with integer multiplicity, or a non-minimal almost embedded hypersurface of multiplicity one. More precisely, we show that our previous min-max theory, developed for constant mean curvature hypersurfaces, can be extended to construct min-max prescribed mean curvature hypersurfaces for certain classes of prescription function, including a generic set of smooth functions, and all nonzero analytic functions. In particular we do not need to assume that h has a sign. 
    more » « less