We study the mean curvature flow in 3-dimensional null hypersurfaces. In a spacetime a hypersurface is called null, if its induced metric is degenerate. The speed of the mean curvature flow of spacelike surfaces in a null hypersurface is the projection of the codimension-two mean curvature vector onto the null hypersurface. We impose fairly mild conditions on the null hypersurface. Then for an outer un-trapped initial surface, a condition which resembles the mean-convexity of a surface in Euclidean space, we prove that the mean curvature flow exists for all times and converges smoothly to a marginally outer trapped surface (MOTS). As an application we obtain the existence of a global foliation of the past of an outermost MOTS, provided the null hypersurface admits an un-trapped foliation asymptotically.
more » « less- NSF-PAR ID:
- 10363349
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Communications in Mathematical Physics
- Volume:
- 390
- Issue:
- 3
- ISSN:
- 0010-3616
- Page Range / eLocation ID:
- p. 1149-1173
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract We study the phenomenon of Type-II curvature blow-up in mean curvature flows of rotationally symmetric noncompact embedded hypersurfaces. Using analytic techniques based on formal matched asymptotics and the construction of upper and lower barrier solutions enveloping formal solutions with prescribed behavior, we show that for each initial hypersurface considered, a mean curvature flow solution exhibits the following behavior near the “vanishing” time T : (1) The highest curvature concentrates at the tip of the hypersurface (an umbilic point), and for each choice of the parameter {\gamma>\frac{1}{2}} , there is a solution with the highest curvature blowing up at the rate {(T-t)^{{-(\gamma+\frac{1}{2})}}} . (2) In a neighborhood of the tip, the solution converges to a translating soliton which is a higher-dimensional analogue of the “Grim Reaper” solution for the curve-shortening flow. (3) Away from the tip, the flow surface approaches a collapsing cylinder at a characteristic rate dependent on the parameter γ.more » « less
-
Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur under the flow, what the flow looks like near these singularities, and what this implies for the structure of the singular set. At the end, we will briefly discuss how one may be able to use the flow in low-dimensional topology.
-
We prove that, for a generic set of smooth prescription functions h on a closed ambient manifold, there always exists a nontrivial, smooth, closed hypersurface of prescribed mean curvature h. The solution is either an embedded minimal hypersurface with integer multiplicity, or a non-minimal almost embedded hypersurface of multiplicity one. More precisely, we show that our previous min-max theory, developed for constant mean curvature hypersurfaces, can be extended to construct min-max prescribed mean curvature hypersurfaces for certain classes of prescription function, including a generic set of smooth functions, and all nonzero analytic functions. In particular we do not need to assume that h has a sign.more » « less
-
Abstract We prove the existence of asymptotically hyperbolic solutions to the vacuum Einstein constraint equations with a marginally outer trapped boundary of positive mean curvature, using the constant mean curvature conformal method. As an application of this result, we verify the Penrose inequality for certain perturbations of Schwarzschild Anti-de Sitter black hole initial data.more » « less
-
Abstract While it is well known from examples that no interesting “halfspace theorem” holds for properly immersed $n$-dimensional self-translating mean curvature flow solitons in Euclidean space $\mathbb{R}^{n+1}$, we show that they must all obey a general “bi-halfspace theorem” (aka “wedge theorem”): two transverse vertical halfspaces can never contain the same such hypersurface. The same holds for any infinite end. The proofs avoid the typical methods of nonlinear barrier construction for the approach via distance functions and the Omori–Yau maximum principle. As an application we classify the closed convex hulls of all properly immersed (possibly with compact boundary) $n$-dimensional mean curvature flow self-translating solitons $\Sigma ^n$ in ${\mathbb{R}}^{n+1}$ up to an orthogonal projection in the direction of translation. This list is short, coinciding with the one given by Hoffman–Meeks in 1989 for minimal submanifolds: all of ${\mathbb{R}}^{n}$, halfspaces, slabs, hyperplanes, and convex compacts in ${\mathbb{R}}^{n}$.