skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Associations between alcohol consumption and gray and white matter volumes in the UK Biobank
Abstract Heavy alcohol consumption has been associated with brain atrophy, neuronal loss, and poorer white matter fiber integrity. However, there is conflicting evidence on whether light-to-moderate alcohol consumption shows similar negative associations with brain structure. To address this, we examine the associations between alcohol intake and brain structure using multimodal imaging data from 36,678 generally healthy middle-aged and older adults from the UK Biobank, controlling for numerous potential confounds. Consistent with prior literature, we find negative associations between alcohol intake and brain macrostructure and microstructure. Specifically, alcohol intake is negatively associated with global brain volume measures, regional gray matter volumes, and white matter microstructure. Here, we show that the negative associations between alcohol intake and brain macrostructure and microstructure are already apparent in individuals consuming an average of only one to two daily alcohol units, and become stronger as alcohol intake increases.  more » « less
Award ID(s):
1942917
PAR ID:
10363381
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Alcohol consumption may impact and shape brain development through perturbed biological pathways and impaired molecular functions. We investigated the relationship between alcohol consumption rates and neuron-enriched extracellular vesicles’ (EVs’) microRNA (miRNA) expression to better understand the impact of alcohol use on early life brain biology. Neuron-enriched EVs’ miRNA expression was measured from plasma samples collected from young people using a commercially available microarray platform while alcohol consumption was measured using the Alcohol Use Disorders Identification Test. Linear regression and network analyses were used to identify significantly differentially expressed miRNAs and to characterize the implicated biological pathways, respectively. Compared to alcohol naïve controls, young people reporting high alcohol consumption exhibited significantly higher expression of three neuron-enriched EVs’ miRNAs including miR-30a-5p, miR-194-5p, and miR-339-3p, although only miR-30a-5p and miR-194-5p survived multiple test correction. The miRNA-miRNA interaction network inferred by a network inference algorithm did not detect any differentially expressed miRNAs with a high cutoff on edge scores. However, when the cutoff of the algorithm was reduced, five miRNAs were identified as interacting with miR-194-5p and miR-30a-5p. These seven miRNAs were associated with 25 biological functions; miR-194-5p was the most highly connected node and was highly correlated with the other miRNAs in this cluster. Our observed association between neuron-enriched EVs’ miRNAs and alcohol consumption concurs with results from experimental animal models of alcohol use and suggests that high rates of alcohol consumption during the adolescent/young adult years may impact brain functioning and development by modulating miRNA expression. 
    more » « less
  2. Abstract From birth to 5 years of age, brain structure matures and evolves alongside emerging cognitive and behavioral abilities. In relating concurrent cognitive functioning and measures of brain structure, a major challenge that has impeded prior investigation of their time‐dynamic relationships is the sparse and irregular nature of most longitudinal neuroimaging data. We demonstrate how this problem can be addressed by applying functional concurrent regression models (FCRMs) to longitudinal cognitive and neuroimaging data. The application of FCRM in neuroimaging is illustrated with longitudinal neuroimaging and cognitive data acquired from a large cohort (n= 210) of healthy children, 2–48 months of age. Quantifying white matter myelination by using myelin water fraction (MWF) as imaging metric derived from MRI scans, application of this methodology reveals an early period (200–500 days) during which whole brain and regional white matter structure, as quantified by MWF, is positively associated with cognitive ability, while we found no such association for whole brain white matter volume. Adjusting for baseline covariates including socioeconomic status as measured by maternal education (SES‐ME), infant feeding practice, gender, and birth weight further reveals an increasing association between SES‐ME and cognitive development with child age. These results shed new light on the emerging patterns of brain and cognitive development, indicating that FCRM provides a useful tool for investigating these evolving relationships. 
    more » « less
  3. Abstract ObjectivesBlack older adults have a higher vascular burden compared to non‐Hispanic White (NHW) older adults, which may put them at risk for a form of depression known as vascular depression (VaDep). The literature examining VaDep in Black older adults is sparse. The current study addressed this important gap by examining whether vascular burden was associated with depressive symptoms in Black older adults. MethodsParticipants included 113 Black older adults from the Healthy Brain Project, a substudy of the Health, Aging, and Body Composition Study. In multiple regression analyses, clinical vascular burden (sum of vascular conditions) and white matter hyperintensity (WMH) volume predicted depressive symptoms as measured by the Center for Epidemiologic Studies Depression Scale, controlling for demographic variables. Follow‐up analyses compared the associations in the Black subsample and in 179 NHW older adults. ResultsHigher total WMH volume, but not clinically‐defined vascular burden, predicted higher concurrent depressive symptoms and higher average depressive symptoms over 4 years. Similar associations were found between uncinate fasciculus (UF) WMHs and concurrent depressive symptoms and between superior longitudinal fasciculus WMHs and average depressive symptoms. The association between depressive symptoms and UF WMH was stronger in Black compared to NHW individuals. ConclusionThis research is consistent with the VaDep hypothesis and extends it to Black older adults, a group that has historically been underrepresented in the literature. Results highlight WMH in the UF as particularly relevant to depressive symptoms in Black older adults and suggest this group may be particularly vulnerable to the negative effects of WMH. 
    more » « less
  4. Accurate characterization of the mechanical properties of the human brain at both microscopic and macroscopic length scales is a critical requirement for modeling of traumatic brain injury and brain folding. To date, most experimental studies that employ classical tension/compression/shear tests report the mechanical properties of the brain averaged over both the gray and white matter within the macroscopic regions of interest. As a result, there is a missing correlation between the independent mechanical properties of the microscopic constituent elements and the composite bulk macroscopic mechanical properties of the tissue. This microstructural computational study aims to inversely predict the hyperelastic mechanical properties of the axonal fibers and their surrounding extracellular matrix (ECM) from the bulk tissue's mechanical properties. We develop a representative volume element (RVE) model of the bulk tissue consisting of axonal fibers and ECM with the embedded element technique. A multiobjective optimization technique is implemented to calibrate the model and establish the independent mechanical properties of axonal fibers and ECM based on seven previously reported experimental mechanical tests for bulk white matter tissue from the corpus callosum. The result of the study shows that the discrepancy between the reported values for the elastic behavior of white matter in literature stems from the anisotropy of the tissue at the microscale. The shear modulus of the axonal fiber is seven times larger than the ECM, with axonal fibers that also show greater nonlinearity, contrary to the common assumption that both components exhibit identical nonlinear characteristics. Statement of significance The reported mechanical properties of white matter microstructure used in traumatic brain injury or brain mechanics studies vary widely, in some cases by up to two orders of magnitude. Currently, the material parameters of the white matter microstructure are identified by a single loading mode or ultimately two modes of the bulk tissue. The presented material models only define the response of the bulk and homogenized white matter at a macroscopic scale and cannot explicitly capture the connection between the material properties of microstructure and bulk structure. To fill this knowledge gap, our study characterizes the hyperelastic material properties of axonal fibers and ECM using microscale computational modeling and multiobjective optimization. The hyperelastic material properties for axonal fibers and ECM presented in this study are more accurate than previously proposed because they have been optimized using seven or six loading modes of the bulk tissue, which were previously limited to only two of the seven possible loading modes. As such, the predicted values with high accuracy could be used in various computational modeling studies. The systematic characterization of the material properties of the human brain tissue at both macro- and microscales will lead to more accurate computational predictions, which will enable a better understanding of injury criteria, and has a positive impact on the improved development of smart protection systems, and more accurate prediction of brain development and disease progression. 
    more » « less
  5. Abstract Astrocytes are the main homeostatic cell of the brain involved in many processes related to cognition, immune response, and energy expenditure. It has been suggested that the distribution of astrocytes is associated with brain size, and that they are specialized in humans. To evaluate these, we quantified astrocyte density, soma volume, and total glia density in layer I and white matter in Brodmann's area 9 of humans, chimpanzees, baboons, and macaques. We found that layer I astrocyte density, soma volume, and ratio of astrocytes to total glia cells were highest in humans and increased with brain size. Overall glia density in layer I and white matter were relatively invariant across brain sizes, potentially due to their important metabolic functions on a per volume basis. We also quantified two transporters involved in metabolism through the astrocyte‐neuron lactate shuttle, excitatory amino acid transporter 2 (EAAT2) and glucose transporter 1 (GLUT1). We expected these transporters would be increased in human brains due to their high rate of metabolic consumption and associated gene activity. While humans have higher EAAT2 cell density, GLUT1 vessel volume, and GLUT1 area fraction compared to baboons and chimpanzees, they did not differ from macaques. Therefore, EAAT2 and GLUT1 are not related to increased energetic demands of the human brain. Taken together, these data provide evidence that astrocytes play a unique role in both brain expansion and evolution among primates, with an emphasis on layer I astrocytes having a potentially significant role in human‐specific metabolic processing and cognition. 
    more » « less