We develop closed expressions for a time-resolved photon counting signal induced by an entangled photon pair in an interferometric spectroscopy setup. Superoperator expressions in Liouville-space are derived that can account for relaxation and dephasing induced by coupling to a bath. Interferometric setups mix matter and light variables non-trivially, which complicates their interpretation. We provide an intuitive modular framework for this setup that simplifies its description. Based on the separation between the detection stage and the light–matter interaction processes, we show that the pair entanglement time and the interferometric time-variables control the observed physics time scale. Only a few processes contribute in the limiting case of small entanglement time with respect to the sample response, and specific contributions can be singled out.
more » « less- Award ID(s):
- 1953045
- NSF-PAR ID:
- 10363458
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 156
- Issue:
- 9
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- Article No. 094202
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Correlated photons inspire abundance of metrology-related platforms, which benefit from quantum (anti-) correlations and outperform their classical counterparts. While these mainly focus on entanglement, the role of photon exchange phase and degree of distinguishability has not been widely used in quantum applications. Using an interferometric setup, we theoretically show that, when a two-photon wave function is coupled to matter, it is encoded with “which pathway?” information even at low-degree of entanglement. An interferometric protocol, which enables phase-sensitive discrimination between microscopic interaction histories (pathways), is developed. We find that quantum light interferometry facilitates utterly different set of time delay variables, which are unbound by uncertainty to the inverse bandwidth of the wave packet. We illustrate our findings on an exciton model system and demonstrate how to probe intraband dephasing in the time domain without temporally resolved detection. The unusual scaling of multiphoton coincidence signals with the applied pump intensity is discussed.more » « less
-
null (Ed.)Abstract Optical interferometry has been a long-standing setup for characterization of quantum states of light. Both linear and the nonlinear interferences can provide information regarding the light statistics and underlying detail of the light-matter interactions. Here we demonstrate how interferometric detection of nonlinear spectroscopic signals may be used to improve the measurement accuracy of matter susceptibilities. Light-matter interactions change the photon statistics of quantum light, which are encoded in the field correlation functions. Application is made to the Hong-Ou-Mandel two-photon interferometer that reveals entanglement-enhanced resolution that can be achieved with existing optical technology.more » « less
-
Quantum entanglement plays a prominent role in both foundational physics and emerging quantum technologies. Light is especially promising as a platform for experimental realizations of high-dimensional entanglement, for which the time-frequency degree of freedom provides a natural encoding. Here, we propose and demonstrate a technique to determine the full quantum state of a pair of photons entangled in the time-frequency domain. Our approach, based on spectral shearing interferometry, is entirely self-referenced. To test our system, we measure a photon-pair source with nonlocal spectral phase that results in entanglement between the photons, in which the time when either photon is detected is correlated with the frequency of the other photon. The results demonstrate an effective new tool for exploring the temporal and spectral characteristics of multipartite quantum systems exhibiting high-dimensional entanglement.
-
In this theoretical study, we show how photoelectron signals generated by time-energy entangled photon pairs can monitor ultrafast excited state dynamics of molecules with high joint spectral and temporal resolutions, not limited by the Fourier uncertainty of classical light. This technique scales linearly, rather than quadratically, with the pump intensity, allowing the study of fragile biological samples with low photon fluxes. Since the spectral resolution is achieved by electron detection and the temporal resolution by a variable phase delay, this technique does not require scanning the pump frequency and the entanglement times, which significantly simplifies the experimental setup, making it feasible with current instrumentation. Application is made to the photodissociation dynamics of pyrrole calculated by exact nonadiabatic wave packet simulations in a reduced two nuclear coordinate space. This study demonstrates the unique advantages of ultrafast quantum light spectroscopy.
-
Optical cavities hold great promise to manipulate and control the photochemistry of molecules. We demonstrate how molecular photochemical processes can be manipulated by strong light–matter coupling. For a molecule with an inherent conical intersection, optical cavities can induce significant changes in the nonadiabatic dynamics by either splitting the pristine conical intersections into two novel polaritonic conical intersections or by creating light-induced avoided crossings in the polaritonic surfaces. This is demonstrated by exact real-time quantum dynamics simulations of a three-state two-mode model of pyrazine strongly coupled to a single cavity photon mode. We further explore the effects of external environments through dissipative polaritonic dynamics computed using the hierarchical equation of motion method. We find that cavity-controlled photochemistry can be immune to external environments. We also demonstrate that the polariton-induced changes in the dynamics can be monitored by transient absorption spectroscopy.more » « less