skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geodetic Monitoring at Axial Seamount Since Its 2015 Eruption Reveals a Waning Magma Supply and Tightly Linked Rates of Deformation and Seismicity
Abstract Axial Seamount is a basaltic hot spot volcano with a summit caldera at a depth of ∼1,500 m below sea level, superimposed on the Juan de Fuca spreading ridge, giving it a robust and continuous magma supply. Axial erupted in 1998, 2011, and 2015, and is monitored by a cabled network of instruments including bottom pressure recorders and seismometers. Since its last eruption, Axial has re‐inflated to 85%–90% of its pre‐eruption level. During that time, we have identified eight discrete, short‐term deflation events of 1–4 cm over 1–3 weeks that occurred quasi‐periodically, about every 4–6 months between August 2016 and May 2019. During each short‐term deflation event, the rate of earthquakes dropped abruptly to low levels, and then did not return to higher levels until reinflation had resumed and returned near its previous high. The long‐term geodetic monitoring record suggests that the rate of magma supply has varied by an order of magnitude over decadal time scales. There was a surge in magma supply between 2011 and 2015, causing those two eruptions to be closely spaced in time and the supply rate has been waning since then. This waning supply has implications for eruption forecasting and the next eruption at Axial still appears to be 4–9 years away. We also show that the number of earthquakes per unit of uplift has increased exponentially with total uplift since the 2015 eruption, a pattern consistent with a mechanical model of cumulative rock damage leading to bulk failure during magma accumulation between eruptions.  more » « less
Award ID(s):
1736882 1736926
PAR ID:
10363467
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
23
Issue:
1
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The architecture of magma plumbing systems plays a fundamental role in volcano eruption and evolution. However, the precise configuration of crustal magma reservoirs and conduits responsible for supplying eruptions are difficult to explore across most active volcanic systems. Consequently, our understanding of their correlation with eruption dynamics is limited. Axial Seamount is an active submarine volcano located along the Juan de Fuca Ridge, with known eruptions in 1998, 2011, and 2015. Here we present high-resolution images of P-wave velocity, attenuation, and estimates of temperature and partial melt beneath the summit of Axial Seamount, derived from multi-parameter full waveform inversion of a 2D multi-channel seismic line. Multiple magma reservoirs, including a newly discovered western magma reservoir, are identified in the upper crust, with the maximum melt fraction of ~15–32% in the upper main magma reservoir (MMR) and lower fractions of 10% to 26% in other satellite reservoirs. In addition, a feeding conduit below the MMR with a melt fraction of ~4–11% and a low-velocity throat beneath the eastern caldera wall connecting the MMR roof with eruptive fissures are imaged. These findings delineate an asymmetric shallow plumbing system beneath Axial Seamount, providing insights into the magma pathways that fed recent eruptions. 
    more » « less
  2. Abstract Axial Seamount, an extensively instrumented submarine volcano, lies at the intersection of the Cobb–Eickelberg hot spot and the Juan de Fuca ridge. Since late 2014, the Ocean Observatories Initiative (OOI) has operated a seven-station cabled ocean bottom seismometer (OBS) array that captured Axial’s last eruption in April 2015. This network streams data in real-time, facilitating seismic monitoring and analysis for volcanic unrest detection and eruption forecasting. In this study, we introduce a machine learning (ML)-based real-time seismic monitoring framework for Axial Seamount. Combining both supervised and unsupervised ML and double-difference techniques, we constructed a comprehensive, high-resolution earthquake catalog while effectively discriminating between various seismic and acoustic events. These events include earthquakes generated by different physical processes, acoustic signals of lava–water interaction, and oceanic sources such as whale calls. We first built a labeled ML-based earthquake catalog that extends from November 2014 to the end of 2021 and then implemented real-time monitoring and seismic analysis starting in 2022. With the rapid determination of high-resolution earthquake locations and the capability to track potential precursory signals and coeruption indicators of magma outflow, this system may improve eruption forecasting by providing short-term constraints on Axial’s next eruption. Furthermore, our work demonstrates an effective application that integrates unsupervised learning for signal discrimination in real-time operation, which could be adapted to other regions for volcanic unrest detection and enhanced eruption forecasting. 
    more » « less
  3. Abstract Seismicity during explosive volcanic eruptions remains challenging to observe through the eruptive noise, leaving first‐order questions unanswered. How do earthquake rates change as eruptions progress, and what is their relationship to the opening and closing of the eruptive vent? To address these questions for the Okmok Volcano 2008 explosive eruption, Volcano Explosivity Index 4, we utilized modern detection methods to enhance the existing earthquake catalog. Our enhanced catalog detected significantly more earthquakes than traditional methods. We located, relocated, determined magnitudes and classified all events within this catalog. Our analysis reveals distinct behaviors for long‐period (LP) and volcano‐tectonic (VT) earthquakes, providing insights into the opening and closing cycle. LP earthquakes occur as bursts beneath the eruptive vent and do not coincide in time with the plumes, indicating their relationship to an eruptive process that occurs at a high pressurization state, that is, partially closed conduit. In contrast, VT earthquakes maintain a steadier rate over a broader region, do not track the caldera deflation and have a largerb‐value during the eruption than before or after. The closing sequence is marked by a burst of LPs followed by small VTs south of the volcano. The opening sequence differs as only VTs extend to depth and migrate within minutes of the eruption onset. Our high‐resolution catalog offers valuable insights, demonstrating that volcanic conduits can transition between partially closed (clogged) and open (cracked) states during an eruption. Utilizing modern earthquake processing techniques enables clearer understanding of eruptions and holds promise for studying other volcanic events. 
    more » « less
  4. Monitoring the activity of subglacial volcanoes along the Aleutian Arc in Alaska is important to the safety of local populations, as well as air traffic flying through the region. However, observations of volcanic unrest are limited by accessibility and resources, particularly at glacier-covered systems, making investigations of their stability challenging. Westdahl Peak, a subglacial volcano on Unimak Island in the Aleutian Arc has experienced significant unrest and uplift since its most recent VEI three eruption in 1991-1992. Given the magnitude of observed uplift, previous investigations suggested the potential for eruption by 2010, but no such event has occurred. One hypothesis to explain this prolonged unrest is that the 1-km thick glacier may increase the stability of the magma system. However, the impact of ice caps and glaciers on the short-term stability of volcanoes is not well understood. In this study, thermomechanical finite element models are used to evaluate how the stability of a glaciated volcano is impacted by variations in ice cap thickness, magma chamber depth, geometry, magma flux rate, and seasonal changes in ice cover thickness. Our numerical experiments indicate that the presence of an ice cap (1–3 km thick) increases the average repose interval for a magma system. Among models with different magma chamber geometries, depths, and flux rates, the greatest increases in repose interval are observed in prolate systems where the increase is up to 57% for a chamber located at 5 km-depth. Spherical and oblate also experience smaller, yet significant, increases in repose interval. Additionally, the percentage increase in repose interval is not impacted by variations in magma flux rate for a given ice cap thickness and magma chamber geometry. However, flux rates do influence the timing of eruptions when the system is experiencing seasonal variations in ice thickness. Our results show that systems with low flux rates are more likely to fail when the ice thickness is at its lowest. The numerical estimates further suggest that the ice cap on Westdahl Peak, which is ∼1 km, may slightly increase the stability of the magma system. In general, given flux rates and magma chamber geometries estimated for the Westdahl system, the repose interval can increase by ∼7 years due to the Westdahl glacier. This increase is small on a geologic scale but is significant on human time scales and the impact of glaciers must be considered in future forecasting efforts. 
    more » « less
  5. Abstract Temporal changes in seismic velocity estimated from ambient seismic noise can be utilized to infer subsurface properties at volcanic systems. In this study, we process 7 years of continuous seismic noise at Axial Seamount and use cross‐correlation functions to calculate the relative seismic velocity changes (dv/v) beneath the caldera. We find a long‐term trend of decreasing velocity during rapid inflation, followed by slight increase in velocities as background seismicity increases and inflation rate decreases. Furthermore, we observe small short‐term increases indv/vwhich coincide with short‐term deflation events. Our observations of changes indv/vand their correlation with other geophysical data provide insights into how the top ∼1 km of the crust at Axial Seamount changes in response to subsurface magma movement and capture the transition from a period of rapid reinflation to a period where the caldera wall faults become critically stressed and must rupture to accommodate further inflation. 
    more » « less