skip to main content


Title: Food flows between counties in the United States from 2007 to 2017
Abstract

Food supply chains are essential for distributing goods from production to consumption points. These complex supply chains are important for food security and availability. Recent research has developed novel methods to estimate food flows with high spatial resolution, but we do not currently understand how fine-grained food supply chains vary in time. In this study, we use an improved version of the Food Flow Model to estimate food flows (kg) between all county pairs across all food commodity groups for the years 2007, 2012, and 2017 (which requires estimating 206.3 million links). We then determine the core counties to the US food flow networks through time with a multi-criteria decision analysis technique. Our estimates of county-to-county food flows in time are freely available with this paper and could be useful for future research, policy, and decision-making.

 
more » « less
Award ID(s):
1844773
NSF-PAR ID:
10363470
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
3
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 034035
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Food consumption and production are separated in space through flows of food along complex supply chains. These food supply chains are critical to our food security, making it important to evaluate them. However, detailed spatial information on food flows within countries is rare. The goal of this paper is to estimate food flows between all county pairs within the United States. To do this, we develop the Food Flow Model, a data-driven methodology to estimate spatially explicit food flows. The Food Flow Model integrates machine learning, network properties, production and consumption statistics, mass balance constraints, and linear programming. Specifically, we downscale empirical information on food flows between 132 Freight Analysis Framework locations (17 292 potential links) to the 3142 counties and county-equivalents of the United States (9869 022 potential links). Subnational food flow estimates can be used in future work to improve our understanding of vulnerabilities within a national food supply chain, determine critical infrastructures, and enable spatially detailed footprint assessments.

     
    more » « less
  2. Abstract The food system is an important contributor to carbon dioxide (CO 2 ) emissions. The refrigerated food supply chain is an energy-intensive, nutritious and high-value part of the food system, making it particularly important to consider. In this study, we develop a novel model of cold chain food flows between counties in the United States. Specifically, we estimate truck transport via roadways of meat and prepared foodstuffs for the year 2017. We use the roadway travel distance in our model framework rather than the haversine distance between two locations to improve the estimate for long-haul freight with a temperature-controlled system. This enables us to more accurately calculate the truck fuel consumption and CO 2 emissions related to cold chain food transport. We find that the cold chain transport of meat emitted 8.4 × 10 6 t CO 2 yr −1 and that of prepared foodstuffs emitted 14.5 × 10 6 t CO 2 yr −1 , which is in line with other studies. Meat has a longer average refrigerated transport distance, resulting in higher transport CO 2 emissions per kg than processed foodstuffs. We also find that CO 2 emissions from cold chain food transport are not projected to significantly increase under the temperatures projected to occur with climate change in 2045. These county-level cold chain food flows could be used to inform infrastructure investment, supply chain decision-making and environmental footprint studies. 
    more » « less
  3. Abstract

    The United States and China are key nations in global agricultural and food trade. They share a complex bilateral agri-food trade network in which disruptions could have a global ripple effect. Yet, we do not understand the spatially resolved connections in the bilateral US–China agri-food trade. In this study, we estimate the bilateral agri-food trade between Chinese provinces and U.S. states and counties. First, we estimate bilateral imports and exports of agri-food commodities for provinces and states. Second, we model link-level connections between provinces and states/counties. To do this, we develop a novel algorithm that integrates a variety of national and international databases for the year 2017, including trade data from the US Census Bureau, the US Freight Analysis Framework database, and Multi-Regional Input-Output tables for China. We then adapt the food flow model for inter-county agri-food movements within the US to estimate bilateral trade through port counties. We estimate 2,954 and 162,922 link-level connections at the state-province and county-province resolution, respectively, and identify core nodes in the bilateral agri-food trade network. Our results provide a spatially detailed mapping of the US–China bilateral agri-food trade, which may enable future research and inform decision-makers.

     
    more » « less
  4. Abstract

    Agricultural supply chains play a crucial role in supporting food security in Africa. However, high-resolution supply chain information is often not available, which hinders our ability to determine which interventions in food supply chains would most enhance food security. In this study, we develop a high-resolution supply chain model for essential staple crops in Zambia, aiming to estimate how improvements in transportation infrastructure would impact food security. Specifically, we simulate district-level monthly consumption, trade flows, and storage for maize and cassava in Zambia. We then conduct a counterfactual case study with low transportation costs, discovering that reducing transaction costs leads to higher aggregate net agricultural revenue and aggregate net expenditure. These results indicate that transportation investments are more beneficial to suppliers than to consumers, with implications for household food security in smallholder agriculture. Our study highlights the potential for infrastructure investments to improve food security.

     
    more » « less
  5. Abstract

    Food demands are rising due to an increasing population with changing food preferences, placing pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of the agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how irrigation impacts the large-scale response of crops to varying climate conditions and how we can explicitly account for uncertainty in yield response to climate. To address these, we developed a statistical model to quantitatively estimate historical and future impacts of climate change and irrigation on US county-level crop yields with uncertainty explicitly treated. Historical climate and crop yield data for 1970–2009 were used over different growing regions to fit the model, and five CMIP5 climate projections were applied to simulate future crop yield response to climate. Maize and spring wheat yields are projected to experience decreasing trends with all models in agreement. Winter wheat yields in the Northwest will see an increasing trend. Results for soybean and winter wheat in the South are more complicated, as irrigation can change the trend in projected yields. The comparison between projected crop yield time series for rainfed and irrigated cases indicates that irrigation can buffer against climate variability that could lead to negative yield anomalies. Through trend analysis of the predictors, the trend in crop yield is mainly driven by projected trends in temperature-related indices, and county-level trend analysis shows regional differences are negligible. This framework provides estimates of the impact of climate and irrigation on US crop yields for the 21st century that account for the full uncertainty of climate variables and the range of crop response. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.

     
    more » « less