skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Provenance Shifts During Neogene Brahmaputra Delta Progradation Tied to Coupled Climate and Tectonic Change in the Eastern Himalaya
Abstract The Bengal Basin preserves the erosional signals of coupled tectonic‐climatic change during late Cenozoic development of the Himalayan orogen, yet regional correlation and interpretation of these signals remains incomplete. We present a new geologic map of fluvial‐deltaic deposits of the Indo‐Burman Ranges (IBR), five detrital zircon fission track analyses, and twelve high‐n detrital zircon U‐Pb age distributions (dzUPb) from the Barail (late Eocene–early Miocene), Surma (early–late Miocene), and Tipam (late Miocene–Pliocene) Groups of the ancestral Brahmaputra delta. We use dzUPb statistical tests to correlate the IBR units with equivalent age strata throughout the Bengal Basin. An influx of trans‐Himalayan sediment and the first appearance of ∼50 Ma grains of the Gangdese batholith in the lower Surma Group (∼18–15 Ma) records the early Miocene arrival of the ancestral Brahmaputra delta to the Bengal Basin. Contributions from Himalayan sources systematically decrease up section through the late Miocene as the contribution of Trans‐Himalayan Arc sources increases. The Miocene (∼18–8 Ma) deposition of the Surma Group records upstream expansion of the ancestral Brahmaputra River into southeastern Tibet. Late Miocene (<8 Ma) progradation of the fluvial part of the delta (Tipam Group) routed trans‐Himalayan sediment over the shelf edge to the Nicobar Fan. We propose that Miocene progradation of the ancestral Brahmaputra delta reflects increasing rates of erosion and sea level fall during intensification of the South Asian Monsoon after the Miocene Climate Optimum, contemporaneous with a pulse of tectonic uplift of the Himalayan hinterland and Tibet.  more » « less
Award ID(s):
2026870
PAR ID:
10363506
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
22
Issue:
12
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The stratigraphic record of Cenozoic uplift and denudation of the Himalayas is distributed across its peripheral foreland basins, as well as in the sediments of the Ganges–Brahmaputra Delta (GBD) and the Bengal–Nicobar Fan (BNF). Recent interrogation of Miocene–Quaternary sediments of the GBD and BNF advance our knowledge of Himalayan sediment dispersal and its relationship to regional tectonics and climate, but these studies are limited to IODP boreholes from the BNF (IODP 354 and 362, 2015-16) and Quaternary sediment cores from the GBD (NSF-PIRE: Life on a tectonically active delta, 2010-18). We examine a complementary yet understudied stratigraphic record of the Miocene–Pliocene ancestral Brahmaputra Delta in outcrops of the Indo-Burman Ranges fold–thrust belt (IBR) of eastern India. We present detailed lithofacies assemblages of Neogene delta plain (Tipam Group) and intertidal to upper-shelf (Surma Group) deposits of the IBR based on two ∼ 500 m stratigraphic sections. New detrital-apatite fission-track (dAFT) and (U-Th)/He (dAHe) dates from the Surma Group in the IBR help to constrain maximum depositional ages (MDA), thermal histories, and sediment accumulation rates. Three fluvial facies (F1–F3) and four shallow marine to intertidal facies (M1–M4) are delineated based on analog depositional environments of the Holocene–modern GBD. Unreset dAFT and dAHe ages constrain MDA to ∼ 9–11 Ma for the Surma Group, which is bracketed by intensification of turbidite deposition on the eastern BNF (∼ 13.5–6.8 Ma). Two dAHe samples yielded younger (∼ 3 Ma) reset ages that we interpret to record cooling from denudation following burial resetting due to a thicker (∼ 2.2–3.2 km) accumulation of sediments near the depocenter. Thermal modeling of the dAFT and dAHe results using QTQt and HeFTy suggest that late Miocene marginal marine sediment accumulation rates may have ranged from ∼ 0.9 to 1.1 mm/yr near the center of the paleodelta. Thermal modeling results imply postdepositional cooling beginning at ∼ 8–6.5 Ma, interpreted to record onset of exhumation associated with the advancing IBR fold belt. The timing of post-burial exhumation of the IBR strata is consistent with previously published constraints for the avulsion of the paleo-Brahmaputra to the west and a westward shift of turbidite deposition on the BNF that started at ∼ 6.8 Ma. Our results contextualize tectonic controls on basin history, creating a pathway for future investigations into autogenic and climatic drivers of behavior of fluvial systems that can be extracted from the stratigraphic record. 
    more » « less
  2. null (Ed.)
    Abstract The response of sediment routing to climatic changes across icehouse-to-greenhouse turnovers is not well documented in Earth's pre-Cenozoic sedimentary record. Southwest Gondwana hosts one of the thickest and most laterally extensive records of Earth's penultimate icehouse, the late Paleozoic ice age. We present the first high-resolution U-Pb zircon chemical abrasion–isotope dilution–thermal ionization mass spectrometry (CA-ID-TIMS) analysis of late Paleozoic ice age deposits in the Kalahari Basin of southern Africa, which, coupled with existing CA-ID-TIMS zircon records from the Paraná and Karoo Basins, we used to refine the late Paleozoic ice age glacial history of SW Gondwana. Key findings from this work suggest that subglacial evidence in the Kalahari region is restricted to the Carboniferous (older than 300 Ma), with glacially influenced deposits culminating in this region by the earliest Permian (296 Ma). The U-Pb detrital zircon geochronologic records from the Paraná Basin of South America, which was located downstream of the Kalahari Basin in the latest Carboniferous and Permian, indicate that large-scale changes in sediment supplied to the Paraná were contemporaneous with shifts in the SW Gondwana ice record. Gondwanan deglaciation events were associated with the delivery of far-field, African-sourced sediments into the Paraná Basin. In contrast, Gondwanan glacial periods were associated with the restriction of African-sourced sediments into the basin. We interpret the influx of far-field sediments into the Paraná Basin as an expansion of the catchment area for the Paraná Basin during the deglaciation events, which occurred in the latest Carboniferous (300–299 Ma), early Permian (296 Ma), and late early Permian (<284 Ma). The coupled ice and detrital zircon records for this region of Gondwana present opportunities to investigate climate feedbacks associated with changes in freshwater and nutrient delivery to late Paleozoic ocean basins across the turnover from icehouse to greenhouse conditions. 
    more » « less
  3. null (Ed.)
    Abstract Carbonate lacustrine strata in nonmarine systems hold great potential for refining depositional ages through U-Pb dating of detrital zircons. The low clastic sediment flux in carbonate depositional environments may increase the relative proportion of zircons deposited by volcanic air fall, potentially increasing the chances of observing detrital ages near the true depositional age. We present U-Pb geochronology of detrital zircons from lacustrine carbonate strata that provides proof of concept for the effectiveness of both acid-digestion recovery and resolving depositional ages of nonmarine strata. Samples were collected from Early Cretaceous foreland basin fluvial sandstone and lacustrine carbonate in southwestern Montana (USA). Late Aptian–early Albian (ca. 115–110 Ma) maximum depositional ages young upsection and agree with biostratigraphic ages. Lacustrine carbonate is an important component in many types of tectonic basins, and application of detrital zircon U-Pb geochronology holds considerable potential for dating critical chemical and climatic events recorded in their stratigraphy. It could also reveal new information for the persistent question about whether the stratigraphic record is dominated by longer periods of background fine-grained sedimentation versus short-duration coarse-grained events. In tectonically active basins, lacustrine carbonates may be valuable for dating the beginning of tectonic subsidence, especially during periods of finer-grained deposition dominated by mudrocks and carbonates. 
    more » « less
  4. Slim Buttes is a 30 km long by 10 km wide set of buttes containing Paleogene strata in northwest South Dakota. At Reva Gap in northern Slim Buttes, Eocene-Oligocene terrestrial strata of Chadron and Brule Formations of the White River Group unconformably overlie the Paleocene Fort Union Formation. An angular unconformity separates the White River Group from overlying Oligocene and Miocene strata of the Arikaree Group. Using detrital zircon U-Pb ages, we determine the provenance of these rocks as part of a broader synthesis of post-Laramide sedimentation in the Rocky Mountains and western Great Plains. The Chadron Formation age spectrum is dominated by Cretaceous and Proterozoic grains that are interpreted to be locally recycled from the underlying Cretaceous and Paleocene strata. The Brule Formation has a maximum depositional age of ~34 Ma; Paleogene zircons dominate the age spectrum, and a wide variety of older zircons are also present. The Oligocene zircons are interpreted to have been sourced from volcanic systems in the Great Basin to the southwest, while the subsequent proportions of the zircons were derived from a variety of source areas in the Nevadaplano and Rocky Mountain areas to the southwest. Sparse amounts of Archean zircons are thought to represent the burial of Laramide uplifts throughout Wyoming at the time of Brule deposition, making for a regional paleotopography with little relief across the western interior of the United States. The Miocene-age Arikaree Group sand has a maximum depositional age of ~26 Ma and a multimodal detrital zircon age spectrum. The Arikaree Group provenance likely represents continued sourcing in the Great Basin volcanic systems and Nevadaplano, the beginnings of the re-exhumation of Laramide basement uplifts, and subsequent sediment evacuation out of the western interior and into the Gulf of Mexico to the southeast. Our findings indicate that the transport process and detrital zircon provenance signatures of these strata are decoupled, and each have their own independent evolution. The volcanic signature is primarily transported via aeolian processes (i.e. volcanic ash), and the recycled detrital zircon signature is primarily transported via fluvial processes. 
    more » « less
  5. Sedimentary basins record crustal-scale tectonic processes related to the construction and demise of orogenic belts, making them an invaluable archive for the reconstruction of the evolution of the North American Cordillera. In southwest Montana, USA, the Renova Formation, considered to locally represent the earliest accumulation following Mesozoic−Cenozoic compressional deformation, is widespread but remains poorly dated, and its origin is debated. Herein, we employed detrital zircon U-Pb and (U-Th)/He double dating and sanidine 40Ar/39Ar geochronology in the context of decimeter-scale measured stratigraphic sections in the Renova Formation of the Muddy Creek Basin to determine basin evolution and sediment provenance and place the basin-scale record within a regional context to illuminate the lithospheric processes driving extension and subsidence. The Muddy Creek Basin is an extensional half graben in southwest Montana that is ∼22 km long and ∼7 km wide, with a >800-m-thick sedimentary package. Basin deposition began ca. 49 Ma, as marked by multiple ignimbrites sourced from the Challis volcanic field, which are overlain by a tuffaceous fluvial section. Fluvial strata are capped by a 46.8 Ma Challis ignimbrite constrained by sanidine 40Ar/39Ar dating. An overlying fossiliferous limestone records the first instance of basinal ponding, which was coeval with the cessation of delivery of Challis volcanics−derived sediment into the Green River Basin. We attribute initial ponding to regional drainage reorganization and damning of the paleo−Idaho River due to uplift and doming of the southern Absaroka volcanic province, resulting in its diversion away from the Green River Basin and backfilling of the Lemhi Pass paleovalley. Detrital zircon maximum depositional ages and sanidine 40Ar/39Ar ages show alternating fluvial sandstone and lacustrine mudstone deposition from 46 Ma to 40 Ma in the Muddy Creek Basin. Sediment provenance was dominated by regionally sourced, Challis volcanics−aged and Idaho Batholith−aged grains, while detrital zircon (U-Th)/He (ZHe) data are dominated by Eocene cooling ages. Basin deposition became fully lacustrine by ca. 40 Ma, based on an increasing frequency of organic-rich mudstone with rare interbedded sandstone. Coarse-grained lithofacies became prominent again starting ca. 37 Ma, coeval with a major shift in sediment provenance due to extension and local footwall unroofing. Detrital zircon U-Pb and corresponding ZHe ages from the upper part of the section are predominantly Paleozoic in age, sourced from the Paleozoic sedimentary strata exposed in the eastern footwall of the Muddy Creek detachment fault. Paleocurrents shift from south- to west-directed trends, supporting the shift to local sources, consistent with initiation of the Muddy Creek detachment fault. Detrital zircon maximum depositional ages from the youngest strata in the basin suggest deposition continuing until at least 36 Ma. These data show that extension in the Muddy Creek Basin, which we attribute to continued lithospheric thermal weakening, initiated ∼10 m.y. later than in the Anaconda and Bitterroot metamorphic core complexes. This points to potentially different drivers of extension in western Montana and fits previously proposed models of a regional southward sweep of extension related to Farallon slab removal. 
    more » « less