ABSTRACT The Great Valley forearc (GVf) basin, California, records deposition along the western margin of North America during active oceanic subduction from Jurassic through Paleogene time. Along the western GVf, its underlying basement, the Coast Range Ophiolite (CRO), is exposed as a narrow outcrop belt. CRO segments are overlain by the Great Valley Group (GVG), and locally, an ophiolitic breccia separates the CRO from basal GVG strata. New stratigraphic, petrographic, and geochronologic data (3865 detrital and 68 igneous zircon U-Pb ages) from the upper CRO, ophiolitic breccia, and basal GVG strata clarify temporal relationships among the three units, constrain maximum depositional ages (MDAs), and identify provenance signatures of the ophiolitic breccia and basal GVG strata. Gabbroic rocks from the upper CRO yield zircon U-Pb ages of 168.0 ± 1.3 Ma and 165.1 ± 1.2 Ma. Prominent detrital-zircon age populations of the ophiolitic breccia and GVG strata comprise Jurassic and Jurassic–Early Cretaceous ages, respectively, with pre-Mesozoic ages in both that are consistent with sources of North America affinity. Combined with petrographic modal analyses that show abundant volcanic grains (> 50%), we interpret the breccia to be mainly derived from the underlying CRO, with limited input from the hinterland of North America, and the basal GVG to be derived from Mesozoic igneous and volcanic rocks of the Sierra Nevada–Klamath magmatic arc and hinterland. Analysis of detrital-zircon grains from the lower and upper ophiolitic breccia yields MDAs of ∼ 166 Ma and ∼ 151 Ma, respectively. Along-strike variation in Jurassic and Cretaceous MDAs from basal GVG strata range from ∼ 148 to 141 Ma, which are interpreted to reflect diachronous deposition in segmented depocenters during early development of the forearc. The ophiolitic breccia was deposited in a forearc position proximal to North America < 4 Myr before the onset of GVG deposition. A new tectonic model for early development of the GVf highlights the role of forearc extension coeval with magmatic arc compression during the earliest stages of basin development. 
                        more » 
                        « less   
                    
                            
                            Provenance of Paleogene Strata at Slim Buttes, South Dakota: Implications for post-Laramide Evolution of Western Laurentia
                        
                    
    
            Slim Buttes is a 30 km long by 10 km wide set of buttes containing Paleogene strata in northwest South Dakota. At Reva Gap in northern Slim Buttes, Eocene-Oligocene terrestrial strata of Chadron and Brule Formations of the White River Group unconformably overlie the Paleocene Fort Union Formation. An angular unconformity separates the White River Group from overlying Oligocene and Miocene strata of the Arikaree Group. Using detrital zircon U-Pb ages, we determine the provenance of these rocks as part of a broader synthesis of post-Laramide sedimentation in the Rocky Mountains and western Great Plains. The Chadron Formation age spectrum is dominated by Cretaceous and Proterozoic grains that are interpreted to be locally recycled from the underlying Cretaceous and Paleocene strata. The Brule Formation has a maximum depositional age of ~34 Ma; Paleogene zircons dominate the age spectrum, and a wide variety of older zircons are also present. The Oligocene zircons are interpreted to have been sourced from volcanic systems in the Great Basin to the southwest, while the subsequent proportions of the zircons were derived from a variety of source areas in the Nevadaplano and Rocky Mountain areas to the southwest. Sparse amounts of Archean zircons are thought to represent the burial of Laramide uplifts throughout Wyoming at the time of Brule deposition, making for a regional paleotopography with little relief across the western interior of the United States. The Miocene-age Arikaree Group sand has a maximum depositional age of ~26 Ma and a multimodal detrital zircon age spectrum. The Arikaree Group provenance likely represents continued sourcing in the Great Basin volcanic systems and Nevadaplano, the beginnings of the re-exhumation of Laramide basement uplifts, and subsequent sediment evacuation out of the western interior and into the Gulf of Mexico to the southeast. Our findings indicate that the transport process and detrital zircon provenance signatures of these strata are decoupled, and each have their own independent evolution. The volcanic signature is primarily transported via aeolian processes (i.e. volcanic ash), and the recycled detrital zircon signature is primarily transported via fluvial processes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2113158
- PAR ID:
- 10595489
- Publisher / Repository:
- SEPM
- Date Published:
- Journal Name:
- The Sedimentary Record
- Volume:
- 22
- Issue:
- 1
- ISSN:
- 1543-8740
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Kaczmarek, Stephen; Sweet, Dustin (Ed.)ABSTRACT The Great Valley forearc (GVf) basin, California, records deposition along the western margin of North America during active oceanic subduction from Jurassic through Paleogene time. Along the western GVf, its underlying basement, the Coast Range Ophiolite (CRO), is exposed as a narrow outcrop belt. CRO segments are overlain by the Great Valley Group (GVG), and locally, an ophiolitic breccia separates the CRO from basal GVG strata. New stratigraphic, petrographic, and geochronologic data (3865 detrital and 68 igneous zircon U-Pb ages) from the upper CRO, ophiolitic breccia, and basal GVG strata clarify temporal relationships among the three units, constrain maximum depositional ages (MDAs), and identify provenance signatures of the ophiolitic breccia and basal GVG strata. Gabbroic rocks from the upper CRO yield zircon U-Pb ages of 168.0 ± 1.3 Ma and 165.1 ± 1.2 Ma. Prominent detrital-zircon age populations of the ophiolitic breccia and GVG strata comprise Jurassic and Jurassic–Early Cretaceous ages, respectively, with pre-Mesozoic ages in both that are consistent with sources of North America affinity. Combined with petrographic modal analyses that show abundant volcanic grains (> 50%), we interpret the breccia to be mainly derived from the underlying CRO, with limited input from the hinterland of North America, and the basal GVG to be derived from Mesozoic igneous and volcanic rocks of the Sierra Nevada–Klamath magmatic arc and hinterland. Analysis of detrital-zircon grains from the lower and upper ophiolitic breccia yields MDAs of ∼ 166 Ma and ∼ 151 Ma, respectively. Along-strike variation in Jurassic and Cretaceous MDAs from basal GVG strata range from ∼ 148 to 141 Ma, which are interpreted to reflect diachronous deposition in segmented depocenters during early development of the forearc. The ophiolitic breccia was deposited in a forearc position proximal to North America < 4 Myr before the onset of GVG deposition. A new tectonic model for early development of the GVf highlights the role of forearc extension coeval with magmatic arc compression during the earliest stages of basin development.more » « less
- 
            null (Ed.)Abstract Carbonate lacustrine strata in nonmarine systems hold great potential for refining depositional ages through U-Pb dating of detrital zircons. The low clastic sediment flux in carbonate depositional environments may increase the relative proportion of zircons deposited by volcanic air fall, potentially increasing the chances of observing detrital ages near the true depositional age. We present U-Pb geochronology of detrital zircons from lacustrine carbonate strata that provides proof of concept for the effectiveness of both acid-digestion recovery and resolving depositional ages of nonmarine strata. Samples were collected from Early Cretaceous foreland basin fluvial sandstone and lacustrine carbonate in southwestern Montana (USA). Late Aptian–early Albian (ca. 115–110 Ma) maximum depositional ages young upsection and agree with biostratigraphic ages. Lacustrine carbonate is an important component in many types of tectonic basins, and application of detrital zircon U-Pb geochronology holds considerable potential for dating critical chemical and climatic events recorded in their stratigraphy. It could also reveal new information for the persistent question about whether the stratigraphic record is dominated by longer periods of background fine-grained sedimentation versus short-duration coarse-grained events. In tectonically active basins, lacustrine carbonates may be valuable for dating the beginning of tectonic subsidence, especially during periods of finer-grained deposition dominated by mudrocks and carbonates.more » « less
- 
            The Upper Jurassic Galice Formation, a metasedimentary unit in the Western Klamath Mountains, formed within an intra-arc basin prior to and during the Nevadan orogeny. New detrital zircon U-Pb age analyses (N = 11; n = 2792) yield maximum depositional ages (MDA) ranging from ca. 160 Ma to 151 Ma, which span Oxfordian to Kimmeridgian time and overlap Nevadan contractional deformation that began by ca. 157 Ma. Zircon ages indicate a significant North American continental provenance component that is consistent with tectonic models placing the Western Klamath terrane on the continental margin in Late Jurassic time. Hf isotopic analysis of Mesozoic detrital zircon (n = 603) from Galice samples reveals wide-ranging εHf values for Jurassic and Triassic grains, many of which cannot be explained by a proximal source in the Klamath Mountains, thus indicating a complex provenance. New U-Pb ages and Hf data from Jurassic plutons within the Klamath Mountains match some of the Galice Formation detrital zircon, but these data cannot account for the most non-radiogenic Jurassic detrital grains. In fact, the in situ Cordilleran arc record does not provide a clear match for the wide-ranging isotopic signature of Triassic and Jurassic grains. When compiled, Galice samples indicate sources in the Sierra Nevada pre-batholithic framework and retroarc region, older Klamath terranes, and possibly overlap strata from the Blue Mountains and the Insular superterrane. Detrital zircon age spectra from strata of the Upper Jurassic Great Valley Group and Mariposa Formation contain similar age modes, which suggests shared sediment sources. Inferred Galice provenance within the Klamath Mountains and more distal sources suggest that the Galice basin received siliciclastic turbidites fed by rivers that traversed the Klamath-Sierran arc from headwaters in the retroarc region. Thus, the Galice Formation contains a record of active Jurassic magmatism in the continental arc, with significant detrital input from continental sediment sources within and east of the active arc. These westward-flowing river systems remained active throughout the shift in Cordilleran arc tectonics from a transtensional system to the Nevadan contractional system, which is characterized by sediment sourced in uplifts within and east of the arc and the thrusting of older Galice sediments beneath older Klamath terranes to the east.more » « less
- 
            Abstract Tandem in situ and isotope dilution U-Pb analysis of zircons from pyroclastic volcanic rocks and both glacial and non-glacial sedimentary strata of the Pocatello Formation (Idaho, northwestern USA) provides new age constraints on Cryogenian glaciation in the North American Cordillera. Two dacitic tuffs sampled within glacigenic strata of the lower diamictite interval of the Scout Mountain Member yield high-precision chemical abrasion isotope dilution U-Pb zircon eruption and depositional ages of 696.43 ± 0.21 and 695.17 ± 0.20 Ma. When supplemented by a new high-precision detrital zircon maximum depositional age of ≤670 Ma for shoreface and offshore sandstones unconformably overlying the lower diamictite, these data are consistent with correlation of the lower diamictite to the early Cryogenian (ca. 717–660 Ma) Sturtian glaciation. These 670–675 Ma zircons persist in beds above the upper diamictite and cap dolostone units, up to and including a purported “reworked fallout tuff,” which we instead conclude provides only a maximum depositional age of ≤673 Ma from epiclastic volcanic detritus. Rare detrital zircons as young as 658 Ma provide a maximum depositional age for the upper diamictite and overlying cap dolostone units. This new geochronological framework supports litho- and chemostratigraphic correlations of the lower and upper diamictite intervals of the Scout Mountain Member of the Pocatello Formation with the Sturtian (716–660 Ma) and Marinoan (≤650–635 Ma) low-latitude glaciations, respectively. The Pocatello Formation thus contains a more complete record of Cryogenian glaciations than previously postulated.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    