skip to main content

Title: MUSE sneaks a peek at extreme ram-pressure stripping events – V. Towards a complete view of the galaxy cluster A1367

We present an analysis of the kinematics and ionization conditions in a sample composed of seven star-forming galaxies undergoing ram-pressure stripping in the A1367 cluster, and the galaxy ESO137–001 in the Norma cluster. MUSE observations of two new galaxies in this sample, CGCG097–073 and CGCG097–079, are also presented. This sample is characterized by homogeneous integral field spectroscopy with MUSE and by a consistent selection based on the presence of ionized gas tails. The ratio [O i]/H α is consistently elevated in the tails of these objects compared to what observed in unperturbed galaxy discs, an ubiquitous feature which we attribute to shocks or turbulent phenomena in the stripped gas. Compact star-forming regions are observed in only $\approx 50 {{\ \rm per\ cent}}$ of the tails, implying that specific (currently unknown) conditions are needed to trigger star formation inside the stripped gas. Focusing on the interface regions between the interstellar and intracluster medium, we observe different line ratios that we associate to different stages of the stripping process, with galaxies at an early stage of perturbation showing more prominent signatures of elevated star formation. Our analysis, thus, demonstrates the power of a well selected and homogeneous sample to infer general properties arising more » from ram-pressure stripping inside local clusters.

« less
; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 5180-5197
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    Ram pressure stripping (RPS) is an important process to affect the evolution of cluster galaxies and their surrounding environment. We present a large MUSE mosaic for ESO 137-001 and its stripped tails, and study the detailed distributions and kinematics of the ionized gas and stars. The warm, ionized gas is detected to at least 87 kpc from the galaxy and splits into three tails. There is a clear velocity gradient roughly perpendicular to the stripping direction, which decreases along the tails and disappears beyond ∼45 kpc downstream. The velocity dispersion of the ionized gas increases to ∼80 km s−1 at ∼20 kpc downstream and stays flat beyond. The stars in the galaxy disc present a regular rotation motion, while the ionized gas is already disturbed by the ram pressure. Based on the observed velocity gradient, we construct the velocity model for the residual galactic rotation in the tails and discuss the origin and implication of its fading with distance. By comparing with theoretical studies, we interpreted the increased velocity dispersion as the result of the oscillations induced by the gas flows in the galaxy wake, which may imply an enhanced degree of turbulence there. We also compare the kinematic properties of the ionizedmore »gas and molecular gas from ALMA, which shows they are co-moving and kinematically mixed through the tails. Our study demonstrates the great potential of spatially resolved spectroscopy in probing the detailed kinematic properties of the stripped gas, which can provide important information for future simulations of RPS.

    « less

    We present the results from the HST WFC3 and ACS data on an archetypal galaxy undergoing ram pressure stripping (RPS), ESO 137-001, in the nearby cluster Abell 3627. ESO 137-001 is known to host a prominent stripped tail detected in many bands from X-rays, H α to CO. The HST data reveal significant features indicative of RPS such as asymmetric dust distribution and surface brightness as well as many blue young star complexes in the tail. We study the correlation between the blue young star complexes from HST, H ii regions from H α (MUSE), and dense molecular clouds from CO (ALMA). The correlation between the HST blue star clusters and the H ii regions is very good, while their correlation with the dense CO clumps are typically not good, presumably due in part to evolutionary effects. In comparison to the starburst99 + cloudy model, many blue regions are found to be young (<10 Myr) and the total star formation (SF) rate in the tail is 0.3–0.6 M⊙ yr−1 for sources measured with ages less than 100 Myr, about 40 per cent of the SF rate in the galaxy. We trace SF over at least 100 Myr and give a full picture of the recent SF history in the tail. We alsomore »demonstrate the importance of including nebular emissions and a nebular to stellar extinction correction factor when comparing the model to the broad-band data. Our work on ESO 137-001 demonstrates the importance of HST data for constraining the SF history in stripped tails.

    « less

    Ram pressure stripping (RPS) is an important mechanism for galaxy evolution. In this work, we present results from HST and APEX observations of one RPS galaxy, ESO 137-002 in the closest rich cluster Abell 3627. The galaxy is known to host prominent X-ray and H α tails. The HST data reveal significant features indicative of RPS in the galaxy, including asymmetric distribution of dust in the galaxy, dust filaments, and dust clouds in ablation generally aligned with the direction of ram pressure, and young star clusters immediately upstream of the residual dust clouds that suggest star formation (SF) triggered by RPS. The distribution of the molecular gas is asymmetric in the galaxy, with no CO upstream and abundant CO downstream and in the inner tail region. A total amount of ∼5.5 × 109 M⊙ of molecular gas is detected in the galaxy and its tail. On the other hand, we do not detect any active SF in the X-ray and H α tails of ESO 137-002 with the HST data and place a limit on the SF efficiency in the tail. Hence, if selected by SF behind the galaxy in the optical or UV (e.g. surveys like GASP or using the Galex data), ESO 137-002more »will not be considered a ‘jellyfish’ galaxy. Thus, galaxies like ESO 137-002 are important for our comprehensive understanding of RPS galaxies and the evolution of the stripped material. ESO 137-002 also presents a great example of an edge-on galaxy experiencing a nearly edge-on RPS wind.

    « less
  4. We report the detection of CO emission in the recently discovered multiphase isolated gas cloud in the nearby galaxy cluster Abell 1367. The cloud is located about 800 kpc in projection from the center of the cluster and at a projected distance of > 80 kpc from any galaxy. It is the first and the only known isolated “intra-cluster” cloud detected in X-ray, H α , and CO emission. We found a total of about 2.2 × 10 8   M ⊙ of H 2 with the IRAM 30-m telescope in two regions, one associated with the peak of H α emission and another with the peak of X-ray emission surrounded by weak H α filaments. The velocity of the molecular gas is offset from the underlying H α emission by > 100 km s −1 in the region where the X-ray peaks. The molecular gas may account for about 10% of the total cloud’s mass, which is dominated by the hot X-ray component. The previously measured upper limit on the star formation rate in the cloud indicates that the molecular component is in a non-star-forming state, possibly due to a combination of low density of the gas and the observed levelmore »of velocity dispersion. The presence of the three gas phases associated with the cloud suggests that gas phase mixing with the surrounding intra-cluster medium is taking place. The possible origin of the orphan cloud is a late evolutionary stage of a ram pressure stripping event. In contrast, the nearby ram pressure stripped galaxy 2MASX J11443212+2006238 is in an early phase of stripping and we detected about 2.4 × 10 9   M ⊙ of H 2 in its main body.« less
  5. ABSTRACT Previous studies have revealed a population of galaxies in galaxy clusters with ram pressure stripped (RPS) tails of gas and embedded young stars. We observed 1.4 GHz continuum and H i emission with the Very Large Array in its B-configuration in two fields of the Coma cluster to study the radio properties of RPS galaxies. The best continuum sensitivities in the two fields are 6 and 8 µJy per 4 arcsec beam, respectively, which are 4 and 3 times deeper than those previously published. Radio continuum tails are found in 10 (8 are new) out of 20 RPS galaxies, unambiguously revealing the presence of relativistic electrons and magnetic fields in the stripped tails. Our results also hint that the tail has a steeper spectrum than the galaxy. The 1.4 GHz continuum in the tails is enhanced relative to their H α emission by a factor of ∼7 compared to the main bodies of the RPS galaxies. The 1.4 GHz continuum of the RPS galaxies is also enhanced relative to their infrared emission by a factor of ∼2 compared to star-forming galaxies. The enhancement is likely related to ram pressure and turbulence in the tail. We furthermore present H i detections in three RPS galaxies and uppermore »limits for the other RPS galaxies. The cold gas in D100’s stripped tail is dominated by molecular gas, which is likely a consequence of the high ambient pressure. No evidence of radio emission associated with ultra-diffuse galaxies is found in our data.« less