skip to main content


Title: Non-star-forming molecular gas in the Abell 1367 intra-cluster multiphase orphan cloud
We report the detection of CO emission in the recently discovered multiphase isolated gas cloud in the nearby galaxy cluster Abell 1367. The cloud is located about 800 kpc in projection from the center of the cluster and at a projected distance of > 80 kpc from any galaxy. It is the first and the only known isolated “intra-cluster” cloud detected in X-ray, H α , and CO emission. We found a total of about 2.2 × 10 8   M ⊙ of H 2 with the IRAM 30-m telescope in two regions, one associated with the peak of H α emission and another with the peak of X-ray emission surrounded by weak H α filaments. The velocity of the molecular gas is offset from the underlying H α emission by > 100 km s −1 in the region where the X-ray peaks. The molecular gas may account for about 10% of the total cloud’s mass, which is dominated by the hot X-ray component. The previously measured upper limit on the star formation rate in the cloud indicates that the molecular component is in a non-star-forming state, possibly due to a combination of low density of the gas and the observed level of velocity dispersion. The presence of the three gas phases associated with the cloud suggests that gas phase mixing with the surrounding intra-cluster medium is taking place. The possible origin of the orphan cloud is a late evolutionary stage of a ram pressure stripping event. In contrast, the nearby ram pressure stripped galaxy 2MASX J11443212+2006238 is in an early phase of stripping and we detected about 2.4 × 10 9   M ⊙ of H 2 in its main body.  more » « less
Award ID(s):
1714764
NSF-PAR ID:
10383308
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
658
ISSN:
0004-6361
Page Range / eLocation ID:
L5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Recent studies have highlighted the potential significance of intracluster medium (ICM) clumping and its important implications for cluster cosmology and baryon physics. Many of the ICM clumps can originate from infalling galaxies, as stripped interstellar medium (ISM) mixing into the hot ICM. However, a direct connection between ICM clumping and stripped ISM has not been unambiguously established before. Here, we present the discovery of the first and still the only known isolated cloud (or orphan cloud [OC]) detected in both X-rays and H α in the nearby cluster A1367. With an effective radius of 30 kpc, this cloud has an average X-ray temperature of 1.6 keV, a bolometric X-ray luminosity of ∼3.1 × 1041 erg s−1, and a hot gas mass of ∼1010 M⊙. From the Multi-Unit Spectroscopic Explorer (MUSE) data, the OC shows an interesting velocity gradient nearly along the east-west direction with a low level of velocity dispersion of ∼80 km s−1, which may suggest a low level of the ICM turbulence. The emission line diagnostics suggest little star formation in the main H α cloud and a low-ionization (nuclear) emission-line regions like spectrum, but the excitation mechanisms remain unclear. This example shows that stripped ISM, even long after the initial removal from the galaxy, can still induce ICM inhomogeneities. We suggest that the magnetic field can stabilize the OC by suppressing hydrodynamic instabilities and thermal conduction. This example also suggests that at least some ICM clumps are multiphase in nature and implies that the ICM clumps can also be traced in H α. Thus, future deep and wide-field H α surveys can be used to probe the ICM clumping and turbulence. 
    more » « less
  2. Abstract We report the discovery of two kinematically anomalous atomic hydrogen (H i ) clouds in M 100 (NGC 4321), which was observed as part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey in H i 21 cm at 3.3 km s −1 spectroscopic and 44″ × 30″ spatial resolution using the Karl G. Jansky Very Large Array. 15 15 The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. These clouds were identified as structures that show significant kinematic offsets from the rotating disk of M 100. The velocity offsets of 40 km s −1 observed in these clouds are comparable to the offsets seen in intermediate-velocity clouds (IVCs) in the circumgalactic medium (CGM) of the Milky Way and nearby galaxies. We find that one anomalous cloud in M 100 is associated with star-forming regions detected in H α and far-ultraviolet imaging. Our investigation shows that anomalous clouds in M 100 may originate from multiple mechanisms, such as star formation feedback-driven outflows, ram pressure stripping, and tidal interactions with satellite galaxies. Moreover, we do not detect any cool CGM at 38.8 kpc from the center of M 100, giving an upper limit of N(H i ) ≤1.7 × 10 13 cm −2 (3 σ ). Since M 100 is in the Virgo cluster, the nonexistence of neutral/cool CGM is a likely pathway for turning it into a red galaxy. 
    more » « less
  3. ABSTRACT

    Ram pressure stripping (RPS) is an important mechanism for galaxy evolution. In this work, we present results from HST and APEX observations of one RPS galaxy, ESO 137-002 in the closest rich cluster Abell 3627. The galaxy is known to host prominent X-ray and H α tails. The HST data reveal significant features indicative of RPS in the galaxy, including asymmetric distribution of dust in the galaxy, dust filaments, and dust clouds in ablation generally aligned with the direction of ram pressure, and young star clusters immediately upstream of the residual dust clouds that suggest star formation (SF) triggered by RPS. The distribution of the molecular gas is asymmetric in the galaxy, with no CO upstream and abundant CO downstream and in the inner tail region. A total amount of ∼5.5 × 109 M⊙ of molecular gas is detected in the galaxy and its tail. On the other hand, we do not detect any active SF in the X-ray and H α tails of ESO 137-002 with the HST data and place a limit on the SF efficiency in the tail. Hence, if selected by SF behind the galaxy in the optical or UV (e.g. surveys like GASP or using the Galex data), ESO 137-002 will not be considered a ‘jellyfish’ galaxy. Thus, galaxies like ESO 137-002 are important for our comprehensive understanding of RPS galaxies and the evolution of the stripped material. ESO 137-002 also presents a great example of an edge-on galaxy experiencing a nearly edge-on RPS wind.

     
    more » « less
  4. ABSTRACT

    We present the results from the HST WFC3 and ACS data on an archetypal galaxy undergoing ram pressure stripping (RPS), ESO 137-001, in the nearby cluster Abell 3627. ESO 137-001 is known to host a prominent stripped tail detected in many bands from X-rays, H α to CO. The HST data reveal significant features indicative of RPS such as asymmetric dust distribution and surface brightness as well as many blue young star complexes in the tail. We study the correlation between the blue young star complexes from HST, H ii regions from H α (MUSE), and dense molecular clouds from CO (ALMA). The correlation between the HST blue star clusters and the H ii regions is very good, while their correlation with the dense CO clumps are typically not good, presumably due in part to evolutionary effects. In comparison to the starburst99 + cloudy model, many blue regions are found to be young (<10 Myr) and the total star formation (SF) rate in the tail is 0.3–0.6 M⊙ yr−1 for sources measured with ages less than 100 Myr, about 40 per cent of the SF rate in the galaxy. We trace SF over at least 100 Myr and give a full picture of the recent SF history in the tail. We also demonstrate the importance of including nebular emissions and a nebular to stellar extinction correction factor when comparing the model to the broad-band data. Our work on ESO 137-001 demonstrates the importance of HST data for constraining the SF history in stripped tails.

     
    more » « less
  5. ABSTRACT

    Cluster spiral galaxies suffer catastrophic losses of the cool, neutral gas component of their interstellar medium due to ram pressure stripping, contributing to the observed quenching of star formation in the disc compared to galaxies in lower density environments. However, the short-term effects of ram pressure on the star formation rate and active galactic nucleus (AGN) activity of galaxies undergoing stripping remain unclear. Numerical studies have recently demonstrated cosmic rays can dramatically influence galaxy evolution for isolated galaxies, yet their influence on ram pressure stripping remains poorly constrained. We perform the first cosmic ray magnetohydrodynamic simulations of an L* galaxy undergoing ram pressure stripping, including radiative cooling, self-gravity of the gas, star formation, and stellar feedback. We find the microscopic transport of cosmic rays plays a key role in modulating the star formation enhancement experienced by spirals at the outskirts of clusters compared to isolated spirals. Moreover, we find that galaxies undergoing ram pressure stripping exhibit enhanced gas accretion on to their centres, which may explain the prevalence of AGNs in these objects. In agreement with observations, we find cosmic rays significantly boost the global radio emission of cluster spirals. Although the gas removal rate is relatively insensitive to cosmic ray physics, we find that cosmic rays significantly modify the phase distribution of the remaining gas disc. These results suggest observations of galaxies undergoing ram pressure stripping may place novel constraints on cosmic ray calorimetry and transport.

     
    more » « less