skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optical Momentum Alignment Effect in WSe 2 Phototransistor
Abstract The optical momentum alignment effect is demonstrated in WSe2phototransistors . When the photon energy is above the A exciton energy, the maximum photocurrent response occurs for the light polarization direction parallel to the metal electrode edge, suggesting that electrons in the valence band of WSe2prefer to absorb photons with the polarization direction perpendicular to their momentum direction. Further studies indicate that the anisotropic distribution of photo‐excited carriers is likely due to the pseudospin‐induced optical transition selection rules. If the photon energy is below the A exciton energy, the photocurrent signals are maximized when the incident light is polarized in the direction perpendicular to the electrode edge, which is mainly attributed to the polarized absorption of the plasmonic gold electrodes. Moreover, the photocurrent peak can be controlled by an electric field via the quantum confined Stark effect. This resonance peak can also be shifted by adjusting environmental temperatures due to the temperature‐dependent nature of the WSe2band gap. These experimental studies shed light on the knowledge of photocurrent generation mechanisms, opening the door for engineering future anisotropic optoelectronics.  more » « less
Award ID(s):
1805924
PAR ID:
10363546
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
9
Issue:
13
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(Al x Ga 1− x ) 2 O 3 thin films (0 [Formula: see text] x [Formula: see text] 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular ([Formula: see text] = 1.31 eV) and parallel ([Formula: see text] = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga 2 O 3 and α-Al 2 O 3 , respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga 2 O 3 whereas for α-Al 2 O 3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs at approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M 1 type in α-Ga 2 O 3 to M 0 type van Hove singularity in α-Al 2 O 3 . 
    more » « less
  2. Abstract In WSe2monolayers, strain has been used to control the energy of excitons, induce funneling, and realize single-photon sources. Here, we developed a technique for probing the dynamics of free excitons in nanoscale strain landscapes in such monolayers. A nanosculpted tapered optical fiber is used to simultaneously generate strain and probe the near-field optical response of WSe2monolayers at 5 K. When the monolayer is pushed by the fiber, its lowest energy states shift by as much as 390 meV (>20% of the bandgap of a WSe2monolayer). Polarization and lifetime measurements of these red-shifting peaks indicate they originate from dark excitons. We conclude free dark excitons are funneled to high-strain regions during their long lifetime and are the principal participants in drift and diffusion at cryogenic temperatures. This insight supports proposals on the origin of single-photon sources in WSe2and demonstrates a route towards exciton traps for exciton condensation. 
    more » « less
  3. Abstract 2D dilute magnetic semiconductors have been recently reported in transition metal dichalcogenides doped with spin‐polarized transition metal atoms, for example vanadium‐doped WS2monolayers, which exhibit room‐temperature ferromagnetic ordering. However, a broadband characterization of the electronic band structure of these doped WS2monolayers and its dependence on vanadium concentration is still lacking. Therefore, power‐dependent photoluminescence, resonant four‐wave mixing, and differential reflectance spectroscopies are performed here to study optical transitions close to the A exciton energy of vanadium‐doped WS2monolayers at three different doping levels. Instead of a single A exciton peak, vanadium‐doped samples exhibit two photoluminescence peaks associated with transitions from a donor‐like level and the conduction band minima. Moreover, resonant Raman and second‐harmonic generation experiments reveal a blueshift in the B exciton energy but no energy change in the C exciton after vanadium doping. Density functional theory calculations show that the band structure is sensitive to the HubbardUcorrection for vanadium, and several scenarios are proposed to explain the two photoluminescence peaks around the A exciton energy region. This work provides the first broadband optical characterization of these 2D dilute magnetic semiconductors, shedding light on the novel and tunable electronic features of V‐doped WS2 monolayers. 
    more » « less
  4. Abstract Three-dimensional topological insulators have been demonstrated in recent years, which possess intriguing gapless, spin-polarized Dirac states with linear dispersion only on the surface. The spin polarization of the topological surface states is also locked to its momentum, which allows controlling motion of electrons using optical helicity, i.e., circularly polarized light. The electrical and thermal transport can also be significantly tuned by the helicity-control of surface state electrons. Here, we report studies of photo-thermoelectric effect of the topological surface states in Bi2Te2Se thin films with large tunability using varied gate voltages and optical helicity. The Seebeck coefficient can be altered by more than five times compared to the case without spin injection. This deep tuning is originated from the optical helicity-induced photocurrent which is shown to be enhanced, reduced, turned off, and even inverted due to the change of the accessed band structures by electrical gating. The helicity-selected topological surface state thus has a large effect on thermoelectric transport, demonstrating great opportunities for realizing helicity control of optoelectronic and thermal devices. 
    more » « less
  5. Abstract Two distinct stacking orders in ReS2are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one‐unit cell displacement along theaaxis. First‐principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1for AA stacking, and 20 cm−1for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular tobaxis. The findings underscore the stacking‐order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order. 
    more » « less