skip to main content


Title: Climate, urbanization, and species traits interactively drive flowering duration
Abstract

A wave of green leaves and multi‐colored flowers advances from low to high latitudes each spring. However, little is known about how flowering offset (i.e., ending of flowering) and duration of populations of the same species vary along environmental gradients. Understanding these patterns is critical for predicting the effects of future climate and land‐use change on plants, pollinators, and herbivores. Here, we investigated potential climatic and landscape drivers of flowering onset, offset, and duration of 52 plant species with varying key traits. We generated phenology estimates using >270,000 community‐science photographs and a novel presence‐only phenometric estimation method. We found longer flowering durations in warmer areas, which is more obvious for summer‐blooming species compared to spring‐bloomers driven by their strongly differing offset dynamics. We also found that higher human population density and higher annual precipitation are associated with delayed flowering offset and extended flowering duration. Finally, offset of woody perennials was more sensitive than herbaceous species to both climate and urbanization drivers. Empirical forecast models suggested that flowering durations will be longer in 2030 and 2050 under representative concentration pathway (RCP) 8.5, especially for summer‐blooming species. Our study provides critical insight into drivers of key flowering phenophases and confirms that Hopkins’ Bioclimatic Law also applies to flowering durations for summer‐blooming species and herbaceous spring‐blooming species.

 
more » « less
Award ID(s):
2033263 1703048
NSF-PAR ID:
10363638
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
4
ISSN:
1354-1013
Page Range / eLocation ID:
p. 892-903
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Changes from historic weather patterns have affected the phenology of many organisms world‐wide. Altered phenology can introduce organisms to novel abiotic conditions during growth and modify species interactions, both of which could drive changes in reproduction.

    We explored how climate change can alter plant reproduction using an experiment in which we manipulated the individual and combined effects of snowmelt timing and frost exposure, and measured subsequent effects on flowering phenology, peak flower density, frost damage, pollinator visitation and reproduction of four subalpine wildflowers. Additionally, we conducted a pollen‐supplementation experiment to test whether the plants in our snowmelt and frost treatments were pollen limited for reproduction. The four plants included species flowering in early spring to mid‐summer.

    The phenology of all four species was significantly advanced, and the bloom duration was longer in the plots from which we removed snow, but with species‐specific responses to snow removal and frost exposure in terms of frost damage, flower production, pollinator visitation and reproduction. The two early blooming species showed significant signs of frost damage in both early snowmelt and frost treatments, which negatively impacted reproduction for one of the species. Further, we recorded fewer pollinators during flowering for the earliest‐blooming species in the snow removal plots. We also found lower fruit and seed set for the early blooming species in the snow removal treatment, which could be attributed to the plants growing under unfavourable abiotic conditions. However, the later‐blooming species escaped frost damage even in the plots where snow was removed, and experienced increased pollinator visitation and reproduction.

    Synthesis.This study provides insight into how plant communities could become altered due to changes in abiotic conditions, and some of the mechanisms involved. While early blooming species may be at a disadvantage under climate change, species that bloom later in the season may benefit from early snowmelt, suggesting that climate change has the potential to reshape flowering communities.

     
    more » « less
  2. Abstract

    Phenological escape, a strategy that deciduous understory plants use to access direct light in spring by leafing out before the canopy closes, plays an important role in shaping the recruitment of temperate tree seedlings. Previous studies have investigated how climate change will alter these dynamics for herbaceous species, but there is a knowledge gap related to how woody species such as tree seedlings will be affected. Here, we modeled temperate tree seedling leaf‐out phenology and canopy close phenology in response to environmental drivers and used climate change projections to forecast changes to the duration of spring phenological escape. We then used these predictions to estimate changes in annual carbon assimilation while accounting for reduced carbon assimilation rates associated with hotter and drier summers. Lastly, we applied these estimates to previously published models of seedling growth and survival to investigate the net effect on seedling demographic performance. Our models predict that temperate tree seedlings will experience improved phenological escape and, therefore, increased spring carbon assimilation under climate change conditions. However, increased summer respiration costs will offset the gains in spring under extreme climate change leading to a net loss in annual carbon assimilation and demographic performance. Furthermore, we found that annual carbon assimilation predictions depend strongly on the species of nearby canopy tree that seedlings were planted near, with all seedlings projected to assimilate less carbon (and therefore experience worse demographic performance) when planted nearQuercus rubracanopy trees as opposed toAcer saccharumcanopy trees. We conclude that changes to spring phenological escape will have important effects on how tree seedling recruitment is affected by climate change, with the magnitude of these effects dependent upon climate change severity and biological interactions with neighboring adults. Thus, future studies of temperate forest recruitment should account for phenological escape dynamics in their models.

     
    more » « less
  3. Abstract Background and Aims Warmer temperatures and altered precipitation patterns are expected to continue to occur as the climate changes. How these changes will impact the flowering phenology of herbaceous perennials in northern forests is poorly understood but could have consequences for forest functioning and species interactions. Here, we examine the flowering phenology responses of five herbaceous perennials to experimental warming and reduced summer rainfall over 3 years. Methods This study is part of the B4WarmED experiment located at two sites in northern Minnesota, USA. Three levels of warming (ambient, +1.6 °C and +3.1 °C) were crossed with two rainfall manipulations (ambient and 27 % reduced growing season rainfall). Key Results We observed species-specific responses to the experimental treatments. Warming alone advanced flowering for four species. Most notably, the two autumn blooming species showed the strongest advance of flowering to warming. Reduced rainfall alone advanced flowering for one autumn blooming species and delayed flowering for the other, with no significant impact on the three early blooming species. Only one species, Solidago spp., showed an interactive response to warming and rainfall manipulation by advancing in +1.6 °C warming (regardless of rainfall manipulation) but not advancing in the warmest, driest treatment. Species-specific responses led to changes in temporal overlap between species. Most notably, the two autumn blooming species diverged significantly in their flowering timing. In ambient conditions, these two species flowered within the same week. In the warmest, driest treatment, flowering occurred over a month apart. Conclusions Herbaceous species may differ in how they respond to future climate conditions. Changes to phenology may lead to fewer resources for insects or a mismatch between plants and pollinators. 
    more » « less
  4. Abstract

    Across taxa, the timing of life‐history events (phenology) is changing in response to warming temperatures. However, little is known about drivers of variation in phenological trends among species.

    We analysed 168 years of museum specimen and sighting data to evaluate the patterns of phenological change in 70 species of solitary bees that varied in three ecological traits: diet breadth (generalist or specialist), seasonality (spring, summer or fall) and nesting location (above‐ground or below‐ground). We estimated changes in onset, median, end and duration of each bee species' annual activity (flight duration) using quantile regression.

    To determine whether ecological traits could explain phenological trends, we compared average trends across species groups that differed in a single trait. We expected that specialist bees would be constrained by their host plants' phenology and would show weaker phenological change than generalist species. We expected phenological advances in spring and delays in summer and fall. Lastly, we expected stronger shifts in above‐ground versus below‐ground nesters.

    Across all species, solitary bees have advanced their phenology by 0.43 days/decade. Since 1970, this advancement has increased fourfold to 1.62 days/decade. Solitary bees have also lengthened their flight period by 0.44 days/decade. Seasonality and nesting location explained variation in trends among species. Spring‐ and summer‐active bees tended to advance their phenology, whereas fall‐active bees tended to delay. Above‐ground nesting species experienced stronger advances than below‐ground nesting bees in spring; however, the opposite was true in summer. Diet breadth was not associated with patterns of phenological change.

    Our study has two key implications. First, an increasing activity period of bees across the flight season means that bee communities will potentially provide pollination services for a longer period of time during the year. And, since phenological trends in solitary bees can be explained by some ecological traits, our study provides insight into mechanisms underpinning population viability of insect pollinators in a changing world.

     
    more » « less
  5. Abstract

    Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates and overall activity duration. We used community‐science and museum specimen data to investigate the effects of climate and urbanisation on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Species extended their period of adult activity similarly in warmer conditions regardless of voltinism classification. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments are likely underreported. This effort provides a framework to address the drivers of adult insect phenology at continental scales and a basis for predicting species response to environmental change.

     
    more » « less