skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Species-specific flowering phenology responses to experimental warming and drought alter herbaceous plant species overlap in a temperate–boreal forest community
Abstract Background and Aims Warmer temperatures and altered precipitation patterns are expected to continue to occur as the climate changes. How these changes will impact the flowering phenology of herbaceous perennials in northern forests is poorly understood but could have consequences for forest functioning and species interactions. Here, we examine the flowering phenology responses of five herbaceous perennials to experimental warming and reduced summer rainfall over 3 years. Methods This study is part of the B4WarmED experiment located at two sites in northern Minnesota, USA. Three levels of warming (ambient, +1.6 °C and +3.1 °C) were crossed with two rainfall manipulations (ambient and 27 % reduced growing season rainfall). Key Results We observed species-specific responses to the experimental treatments. Warming alone advanced flowering for four species. Most notably, the two autumn blooming species showed the strongest advance of flowering to warming. Reduced rainfall alone advanced flowering for one autumn blooming species and delayed flowering for the other, with no significant impact on the three early blooming species. Only one species, Solidago spp., showed an interactive response to warming and rainfall manipulation by advancing in +1.6 °C warming (regardless of rainfall manipulation) but not advancing in the warmest, driest treatment. Species-specific responses led to changes in temporal overlap between species. Most notably, the two autumn blooming species diverged significantly in their flowering timing. In ambient conditions, these two species flowered within the same week. In the warmest, driest treatment, flowering occurred over a month apart. Conclusions Herbaceous species may differ in how they respond to future climate conditions. Changes to phenology may lead to fewer resources for insects or a mismatch between plants and pollinators.  more » « less
Award ID(s):
2021898
NSF-PAR ID:
10332822
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Annals of Botany
Volume:
127
Issue:
2
ISSN:
0305-7364
Page Range / eLocation ID:
203 to 211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A wave of green leaves and multi‐colored flowers advances from low to high latitudes each spring. However, little is known about how flowering offset (i.e., ending of flowering) and duration of populations of the same species vary along environmental gradients. Understanding these patterns is critical for predicting the effects of future climate and land‐use change on plants, pollinators, and herbivores. Here, we investigated potential climatic and landscape drivers of flowering onset, offset, and duration of 52 plant species with varying key traits. We generated phenology estimates using >270,000 community‐science photographs and a novel presence‐only phenometric estimation method. We found longer flowering durations in warmer areas, which is more obvious for summer‐blooming species compared to spring‐bloomers driven by their strongly differing offset dynamics. We also found that higher human population density and higher annual precipitation are associated with delayed flowering offset and extended flowering duration. Finally, offset of woody perennials was more sensitive than herbaceous species to both climate and urbanization drivers. Empirical forecast models suggested that flowering durations will be longer in 2030 and 2050 under representative concentration pathway (RCP) 8.5, especially for summer‐blooming species. Our study provides critical insight into drivers of key flowering phenophases and confirms that Hopkins’ Bioclimatic Law also applies to flowering durations for summer‐blooming species and herbaceous spring‐blooming species.

     
    more » « less
  2. Abstract

    Plant phenology will likely shift with climate change, but how temperature and/or moisture regimes will control phenological responses is not well understood. This is particularly true in Mediterranean climate ecosystems where the warmest temperatures and greatest moisture availability are seasonally asynchronous. We examined plant phenological responses at both the population and community levels to four climate treatments (control, warming, drought, and warming plus additional precipitation) embedded within three prairies across a 520 km latitudinal Mediterranean climate gradient within the Pacific Northwest, USA. At the population level, we monitored flowering and abundances in spring 2017 of eight range‐restricted focal species planted both within and north of their current ranges. At the community level, we used normalized difference vegetation index (NDVI) measured from fall 2016 to summer 2018 to estimate peak live biomass, senescence, seasonal patterns, and growing season length. We found that warming exerted a stronger control than our moisture manipulations on phenology at both the population and community levels. Warming advanced flowering regardless of whether a species was within or beyond its current range. Importantly, many of our focal species had low abundances, particularly in the south, suggesting that establishment, in addition to phenological shifts, may be a strong constraint on their future viability. At the community level, warming advanced the date of peak biomass regardless of site or year. The date of senescence advanced regardless of year for the southern and central sites but only in 2018 for the northern site. Growing season length contracted due to warming at the southern and central sites (~3 weeks) but was unaffected at the northern site. Our results emphasize that future temperature changes may exert strong influence on the timing of a variety of plant phenological events, especially those events that occur when temperature is most limiting, even in seasonally water‐limited Mediterranean ecosystems.

     
    more » « less
  3. Abstract

    In addition to warming temperatures, Arctic ecosystems are responding to climate change with earlier snowmelt and soil thaw. Earlier snowmelt has been examined infrequently in field experiments, and we lack a comprehensive look at belowground responses of the soil biogeochemical system that includes plant roots, decomposers, and soil nutrients. We experimentally advanced the timing of snowmelt in factorial combination with an open‐top chamber warming treatment over a 3‐year period and evaluated the responses of decomposers and nutrient cycling processes. We tested two alternative hypotheses: (a) Early snowmelt and warming advance the timing of root growth and nutrient uptake, altering the timing of microbial and invertebrate activity and key nutrient cycling events; and (b) loss of insulating snow cover damages plants, leading to reductions in root growth and altered biological activity. During the 3 years of our study (2010–2012), we advanced snowmelt by 4, 15, and 10 days, respectively. Despite advancing aboveground plant phenology, particularly in the year with the warmest early‐season temperatures (2012), belowground effects were primarily seen only on the first sampling date of the season or restricted to particular years or soil type. Overall, consistent and substantial responses to early snowmelt were not observed, counter to both of our hypotheses. The data on soil physical conditions, as well interannual comparisons of our results, suggest that this limited response was because of the earlier date of snowmelt that did not coincide with substantially warmer air and soil temperatures as they might in response to a natural climate event. We conclude that the interaction of snowmelt timing with soil temperatures is important to how the ecosystem will respond, but that 1‐ to 2‐week changes in timing of snowmelt alone are not enough to drive season‐long changes in soil microbial and nutrient cycling processes.

     
    more » « less
  4. Abstract

    Changes from historic weather patterns have affected the phenology of many organisms world‐wide. Altered phenology can introduce organisms to novel abiotic conditions during growth and modify species interactions, both of which could drive changes in reproduction.

    We explored how climate change can alter plant reproduction using an experiment in which we manipulated the individual and combined effects of snowmelt timing and frost exposure, and measured subsequent effects on flowering phenology, peak flower density, frost damage, pollinator visitation and reproduction of four subalpine wildflowers. Additionally, we conducted a pollen‐supplementation experiment to test whether the plants in our snowmelt and frost treatments were pollen limited for reproduction. The four plants included species flowering in early spring to mid‐summer.

    The phenology of all four species was significantly advanced, and the bloom duration was longer in the plots from which we removed snow, but with species‐specific responses to snow removal and frost exposure in terms of frost damage, flower production, pollinator visitation and reproduction. The two early blooming species showed significant signs of frost damage in both early snowmelt and frost treatments, which negatively impacted reproduction for one of the species. Further, we recorded fewer pollinators during flowering for the earliest‐blooming species in the snow removal plots. We also found lower fruit and seed set for the early blooming species in the snow removal treatment, which could be attributed to the plants growing under unfavourable abiotic conditions. However, the later‐blooming species escaped frost damage even in the plots where snow was removed, and experienced increased pollinator visitation and reproduction.

    Synthesis.This study provides insight into how plant communities could become altered due to changes in abiotic conditions, and some of the mechanisms involved. While early blooming species may be at a disadvantage under climate change, species that bloom later in the season may benefit from early snowmelt, suggesting that climate change has the potential to reshape flowering communities.

     
    more » « less
  5. Abstract

    Vegetation phenology in spring has substantially advanced under climate warming, consequently shifting the seasonality of ecosystem process and altering biosphere–atmosphere feedbacks. However, whether and to what extent photoperiod (i.e., daylength) affects the phenological advancement is unclear, leading to large uncertainties in projecting future phenological changes. Here we examined the photoperiod effect on spring phenology at a regional scale using in situ observation of six deciduous tree species from the Pan European Phenological Network during 1980–2016. We disentangled the photoperiod effect from the temperature effect (i.e., forcing and chilling) by utilizing the unique topography of the northern Alps of Europe (i.e., varying daylength but uniform temperature distribution across latitudes) and examining phenological changes across latitudes. We found prominent photoperiod‐induced shifts in spring leaf‐out across latitudes (up to 1.7 days per latitudinal degree). Photoperiod regulates spring phenology by delaying early leaf‐out and advancing late leaf‐out caused by temperature variations. Based on these findings, we proposed two phenological models that consider the photoperiod effect through different mechanisms and compared them with a chilling model. We found that photoperiod regulation would slow down the advance in spring leaf‐out under projected climate warming and thus mitigate the increasing frost risk in spring that deciduous forests will face in the future. Our findings identify photoperiod as a critical but understudied factor influencing spring phenology, suggesting that the responses of terrestrial ecosystem processes to climate warming are likely to be overestimated without adequately considering the photoperiod effect.

     
    more » « less