ABSTRACT Stellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]–age and [α/M]–age relations derived for different spatial locations in the Milky Way disc. These relations are derived by hierarchically modelling the star formation history of stars within a given chemical abundance bin. For the first time, we directly observe that significant variation is apparent in the [M/H]–age relation as a function of both Galactocentric radius and distance from the disc mid-plane. The [M/H]–age relations support claims that radial migration has a significant effect in the plane of the disc. Using the [M/H] bin with the youngest mean age at each radial zone in the plane of the disc, the present-day metallicity gradient is measured to be −0.059 ± 0.010 dex kpc−1, in agreement with Cepheids and young field stars. We find a vertically flared distribution of young stars in the outer disc, confirming predictions of models and previous observations. The mean age of the [M/H]–[α/M] distribution of the solar neighbourhood suggests that the high-[M/H] stars are not an evolutionary extension of the low-α sequence. Our observational results are important constraints to Galactic simulations and models of chemical evolution.
more »
« less
Quantifying radial migration in the Milky Way: inefficient over short time-scales but essential to the very outer disc beyond ∼15 kpc
ABSTRACT Stellar radial migration plays an important role in reshaping a galaxy’s structure and the radial distribution of stellar population properties. In this work, we revisit reported observational evidence for radial migration and quantify its strength using the age–[Fe/H] distribution of stars across the Milky Way with APOGEE data. We find a broken age–[Fe/H] relation in the Galactic disc at r > 6 kpc, with a more pronounced break at larger radii. To quantify the strength of radial migration, we assume stars born at each radius have a unique age and metallicity, and then decompose the metallicity distribution function (MDF) of mono-age young populations into different Gaussian components that originated from various birth radii at rbirth < 13 kpc. We find that, at ages of 2 and 3 Gyr, roughly half the stars were formed within 1 kpc of their present radius, and very few stars (<5 per cent) were formed more than 4 kpc away from their present radius. These results suggest limited short-distance radial migration and inefficient long-distance migration in the Milky Way during the last 3 Gyr. In the very outer disc beyond 15 kpc, the observed age–[Fe/H] distribution is consistent with the prediction of pure radial migration from smaller radii, suggesting a migration origin of the very outer disc. We also estimate intrinsic metallicity gradients at ages of 2 and 3 Gyr of −0.061 and −0.063 dex kpc−1, respectively.
more »
« less
- Award ID(s):
- 2009993
- PAR ID:
- 10363692
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 511
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 5639-5655
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Numerous studies of integrated starlight, stellar counts, and kinematics have confirmed that the Milky Way is a barred galaxy. However, far fewer studies have investigated the bar’s stellar population properties, which carry valuable independent information regarding the bar’s formation history. Here, we conduct a detailed analysis of chemical abundance distributions ([Fe/H] and [Mg/Fe]) in the on-bar and off-bar regions to study the azimuthal variation of star formation history (SFH) in the inner Galaxy. We find that the on-bar and off-bar stars at Galactocentric radii 3 kpc < rGC < 5 kpc have remarkably consistent [Fe/H] and [Mg/Fe] distribution functions and [Mg/Fe]–[Fe/H] relation, suggesting a common SFH shared by the long bar and the disc. In contrast, the bar and disc at smaller radii (2 kpc < rGC < 3 kpc) show noticeable differences, with relatively more very metal-rich ($$\rm [Fe/H] \sim 0.4$$) stars but fewer solar abundance stars in the bar. Given the three-phase star formation history proposed for the inner Galaxy in Lian et al., these differences could be explained by the off-bar disc having experienced either a faster early quenching process or recent metal-poor gas accretion. Vertical variations of the abundance distributions at small rGC suggest a wider vertical distribution of low-α stars in the bar, which may serve as chemical evidence for vertical heating through the bar buckling process. The lack of such vertical variations outside the bulge may then suggest a lack of vertical heating in the long bar.more » « less
-
Abstract We present new maps of the Milky Way disk showing the distribution of metallicity ([Fe/H]),α-element abundances ([Mg/Fe]), and stellar age, using a sample of 66,496 red giant stars from the final data release (DR17) of the Apache Point Observatory Galactic Evolution Experiment survey. We measure radial and vertical gradients, quantify the distribution functions for age and metallicity, and explore chemical clock relations across the Milky Way for the low-αdisk, high-αdisk, and total population independently. The low-αdisk exhibits a negative radial metallicity gradient of −0.06 ± 0.001 dex kpc−1, which flattens with distance from the midplane. The high-αdisk shows a flat radial gradient in metallicity and age across nearly all locations of the disk. The age and metallicity distribution functions shift from negatively skewed in the inner Galaxy to positively skewed at large radius. Significant bimodality in the [Mg/Fe]–[Fe/H] plane and in the [Mg/Fe]–age relation persist across the entire disk. The age estimates have typical uncertainties of ∼0.15 in log(age) and may be subject to additional systematic errors, which impose limitations on conclusions drawn from this sample. Nevertheless, these results act as critical constraints on galactic evolution models, constraining which physical processes played a dominant role in the formation of the Milky Way disk. We discuss how radial migration predicts many of the observed trends near the solar neighborhood and in the outer disk, but an additional more dramatic evolution history, such as the multi-infall model or a merger event, is needed to explain the chemical and age bimodality elsewhere in the Galaxy.more » « less
-
ABSTRACT We develop a hybrid model of galactic chemical evolution that combines a multiring computation of chemical enrichment with a prescription for stellar migration and the vertical distribution of stellar populations informed by a cosmological hydrodynamic disc galaxy simulation. Our fiducial model adopts empirically motivated forms of the star formation law and star formation history, with a gradient in outflow mass loading tuned to reproduce the observed metallicity gradient. With this approach, the model reproduces many of the striking qualitative features of the Milky Way disc’s abundance structure: (i) the dependence of the [O/Fe]–[Fe/H] distribution on radius Rgal and mid-plane distance |z|; (ii) the changing shapes of the [O/H] and [Fe/H] distributions with Rgal and |z|; (iii) a broad distribution of [O/Fe] at sub-solar metallicity and changes in the [O/Fe] distribution with Rgal, |z|, and [Fe/H]; (iv) a tight correlation between [O/Fe] and stellar age for [O/Fe] > 0.1; (v) a population of young and intermediate-age α-enhanced stars caused by migration-induced variability in the Type Ia supernova rate; (vi) non-monotonic age–[O/H] and age–[Fe/H] relations, with large scatter and a median age of ∼4 Gyr near solar metallicity. Observationally motivated models with an enhanced star formation rate ∼2 Gyr ago improve agreement with the observed age–[Fe/H] and age–[O/H] relations, but worsen agreement with the observed age–[O/Fe] relation. None of our models predict an [O/Fe] distribution with the distinct bimodality seen in the observations, suggesting that more dramatic evolutionary pathways are required. All code and tables used for our models are publicly available through the Versatile Integrator for Chemical Evolution (VICE; https://pypi.org/project/vice).more » « less
-
NA (Ed.)ABSTRACT We present a new scheme for the classification of the in-situ and accreted globular clusters (GCs). The scheme uses total energy E and z-component of the orbital angular momentum and is calibrated using the [Al/Fe] abundance ratio. We demonstrate that this classification results in two GC populations with distinct spatial, kinematic, and chemical abundance distributions. The in-situ GCs are distributed within the central 10 kpc of the Galaxy in a flattened configuration aligned with the Milky Way (MW) disc, while the accreted GCs have a wide distribution of distances and a spatial distribution close to spherical. In-situ and accreted GCs have different $$\rm [Fe/H]$$ distributions with the well-known bimodality present only in the metallicity distribution of the in-situ GCs. Furthermore, the accreted and in-situ GCs are well separated in the plane of $$\rm [Al/Fe]-[Mg/Fe]$$ abundance ratios and follow distinct sequences in the age–$$\rm [Fe/H]$$ plane. The in-situ GCs in our classification show a clear disc spin-up signature – the increase of median Vϕ at metallicities −1.3 < [Fe/H] < −1 similar to the spin-up in the in-situ field stars. This signature signals the MW’s disc formation, which occurred ≈11.7−12.7 Gyr ago (or at z ≈ 3.1−5.3) according to in-situ GC ages. In-situ GCs with metallicities of $$\rm [Fe/H]\gtrsim -1.3$$ were thus born in the MW disc, while lower metallicity in-situ GCs were born during early, turbulent, pre-disc stages of the evolution of the Galaxy and are part of its Aurora stellar component.more » « less