Autism spectrum disorders (ASDs) arise from altered development of the central nervous system, and manifest behaviorally as social interaction deficits and restricted and repetitive behaviors. Alterations to parvalbumin (PV) expressing interneurons have been implicated in the neuropathological and behavioral deficits in autism. In addition, perineuronal nets (PNNs), specialized extracellular matrix structures that enwrap the PV-expressing neurons, also may be altered, which compromises neuronal function and susceptibility to oxidative stress. In particular, the prefrontal cortex (PFC), which regulates several core autistic traits, relies on the normal organization of PNNs and PV-expressing cells, as well as other neural circuit elements. Consequently, we investigated whether PNNs and PV-expressing cells were altered in the PFC of the CNTNAP2 knockout mouse model of ASD and whether these contributed to core autistic-like behaviors in this model system. We observed an overexpression of PNNs, PV-expressing cells, and PNNs enwrapping PV-expressing cells in adult CNTNAP2 mice. Transient digestion of PNNs from the prefrontal cortex (PFC) by injection of chondroitinase ABC in CNTNAP2 mutant mice rescued some of the social interaction deficits, but not the restricted and repetitive behaviors. These findings suggest that the neurobiological regulation of PNNs and PVs in the PFC contribute to social interaction behaviors in neurological disorders including autism.
more »
« less
Deep phenotyping reveals movement phenotypes in mouse neurodevelopmental models
Abstract BackgroundRepetitive action, resistance to environmental change and fine motor disruptions are hallmarks of autism spectrum disorder (ASD) and other neurodevelopmental disorders, and vary considerably from individual to individual. In animal models, conventional behavioral phenotyping captures such fine-scale variations incompletely. Here we observed male and female C57BL/6J mice to methodically catalog adaptive movement over multiple days and examined two rodent models of developmental disorders against this dynamic baseline. We then investigated the behavioral consequences of a cerebellum-specific deletion in Tsc1 protein and a whole-brain knockout in Cntnap2 protein in mice. Both of these mutations are found in clinical conditions and have been associated with ASD. MethodsWe used advances in computer vision and deep learning, namely a generalized form of high-dimensional statistical analysis, to develop a framework for characterizing mouse movement on multiple timescales using a single popular behavioral assay, the open-field test. The pipeline takes virtual markers from pose estimation to find behavior clusters and generate wavelet signatures of behavior classes. We measured spatial and temporal habituation to a new environment across minutes and days, different types of self-grooming, locomotion and gait. ResultsBoth Cntnap2 knockouts and L7-Tsc1 mutants showed forelimb lag during gait. L7-Tsc1 mutants and Cntnap2 knockouts showed complex defects in multi-day adaptation, lacking the tendency of wild-type mice to spend progressively more time in corners of the arena. In L7-Tsc1 mutant mice, failure to adapt took the form of maintained ambling, turning and locomotion, and an overall decrease in grooming. However, adaptation in these traits was similar between wild-type mice and Cntnap2 knockouts. L7-Tsc1 mutant and Cntnap2 knockout mouse models showed different patterns of behavioral state occupancy. LimitationsGenetic risk factors for autism are numerous, and we tested only two. Our pipeline was only done under conditions of free behavior. Testing under task or social conditions would reveal more information about behavioral dynamics and variability. ConclusionsOur automated pipeline for deep phenotyping successfully captures model-specific deviations in adaptation and movement as well as differences in the detailed structure of behavioral dynamics. The reported deficits indicate that deep phenotyping constitutes a robust set of ASD symptoms that may be considered for implementation in clinical settings as quantitative diagnosis criteria.
more »
« less
- Award ID(s):
- 1734030
- PAR ID:
- 10363727
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Molecular Autism
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2040-2392
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mutations in autism spectrum disorder (ASD) risk genes disrupt neural network dynamics that ultimately lead to abnormal behavior. To understand how ASD-risk genes influence neural circuit computation during behavior, we analyzed the hippocampal network by performing large-scale cellular calcium imaging from hundreds of individual CA1 neurons simultaneously in transgenic mice with total knockout of the X-linked ASD-risk geneNEXMIF(neurite extension and migration factor). AsNEXMIFknockout in mice led to profound learning and memory deficits, we examined the CA1 network during voluntary locomotion, a fundamental component of spatial memory. We found thatNEXMIFknockout does not alter the overall excitability of individual neurons but exaggerates movement-related neuronal responses. To quantify network functional connectivity changes, we applied closeness centrality analysis from graph theory to our large-scale calcium imaging datasets, in addition to using the conventional pairwise correlation analysis. Closeness centrality analysis considers both the number of connections and the connection strength between neurons within a network. We found that in wild-type mice the CA1 network desynchronizes during locomotion, consistent with increased network information coding during active behavior. UponNEXMIFknockout, CA1 network is over-synchronized regardless of behavioral state and fails to desynchronize during locomotion, highlighting how perturbations in ASD-implicated genes create abnormal network synchronization that could contribute to ASD-related behaviors.more » « less
-
Autism spectrum disorder (ASD) is associated with neurodevelopmental alterations, including atypical forebrain cellular organization. Mutations in several ASD-related genes often result in cerebral cortical anomalies, such as the abnormal developmental migration of excitatory pyramidal cells and the malformation of inhibitory neuronal circuitry. Notably here, mutations in the CNTNAP2 gene result in ectopic superficial cortical neurons stalled in lower cortical layers and alterations to the balance of cortical excitation and inhibition. However, the broader circuit-level implications of these findings have not been previously investigated. Therefore, we assessed whether ectopic cortical neurons in CNTNAP2 mutant mice form aberrant connections with higher-order thalamic nuclei, potentially accounting for some autistic behaviors, such as repetitive and hyperactive behaviors. Furthermore, we assessed whether the development of parvalbumin-positive (PV) cortical interneurons and their specialized matrix support structures, called perineuronal nets (PNNs), were altered in these mutant mice. We found alterations in both ectopic neuronal connectivity and in the development of PNNs, PV neurons and PNNs enwrapping PV neurons in various sensory cortical regions and at different postnatal ages in the CNTNAP2 mutant mice, which likely lead to some of the cortical excitation/inhibition (E/I) imbalance associated with ASD. These findings suggest neuroanatomical alterations in cortical regions that underlie the emergence of ASD-related behaviors in this mouse model of the disorder.more » « less
-
Autism spectrum disorder is increasingly understood to be based on atypical signal transfer among multiple interconnected networks in the brain. Relative temporal patterns of neural activity have been shown to underlie both the altered neurophysiology and the altered behaviors in a variety of neurogenic disorders. We assessed brain network dynamics variability in autism spectrum disorders (ASD) using measures of synchronization (phase‐locking) strength, and timing of synchronization and desynchronization of neural activity (desynchronization ratio) across frequency bands of resting‐state electroencephalography (EEG). Our analysis indicated that frontoparietal synchronization is higher in ASD but with more short periods of desynchronization. It also indicates that the relationship between the properties of neural synchronization and behavior is different in ASD and typically developing populations. Recent theoretical studies suggest that neural networks with a high desynchronization ratio have increased sensitivity to inputs. Our results point to the potential significance of this phenomenon to the autistic brain. This sensitivity may disrupt the production of an appropriate neural and behavioral responses to external stimuli. Cognitive processes dependent on the integration of activity from multiple networks maybe, as a result, particularly vulnerable to disruption.Autism Res2020, 13: 24–31. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. Lay SummaryParts of the brain can work together by synchronizing the activity of the neurons. We recorded the electrical activity of the brain in adolescents with autism spectrum disorder and then compared the recording to that of their peers without the diagnosis. We found that in participants with autism, there were a lot of very short time periods of non‐synchronized activity between frontal and parietal parts of the brain. Mathematical models show that the brain system with this kind of activity is very sensitive to external events.more » « less
-
Abstract Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether selective dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and enhances the risk for seizures has not been evaluated. We tested the hypothesis that the lack of Nrp2 in MGE-derived interneuron precursors disrupts the excitation/inhibition balance in hippocampal circuits, thus predisposing the network to seizures and behavioral patterns associated with ASD. Embryonic deletion of Nrp2 during the developmental period for migration of MGE derived interneuron precursors (iCKO) significantly reduced parvalbumin, neuropeptide Y, and somatostatin positive neurons in the hippocampal CA1. Consequently, when compared to controls, the frequency of inhibitory synaptic currents in CA1 pyramidal cells was reduced while frequency of excitatory synaptic currents was increased in iCKO mice. Although passive and active membrane properties of CA1 pyramidal cells were unchanged, iCKO mice showed enhanced susceptibility to chemically evoked seizures. Moreover, iCKO mice exhibited selective behavioral deficits in both preference for social novelty and goal-directed learning, which are consistent with ASD-like phenotype. Together, our findings show that disruption of developmental Nrp2 regulation of interneuron circuit establishment, produces ASD-like behaviors and enhanced risk for epilepsy. These results support the developmental interneuronopathy hypothesis of ASD epilepsy comorbidity.more » « less
An official website of the United States government
