skip to main content


Title: Curando La Comunidad [Healing the Community]: Community-Centered STEM Identity

This article highlights the role of community among Latina/o/x students pursuing degrees in science, technology, engineering, and mathematics (STEM) at 2- and 4-year Hispanic Serving Institutions (HSI). Community-based perspectives are often missing from traditional STEM disciplinary contexts; however, our Community-Centered STEM Identity model recognizes how Latinx students develop STEM identities by grounding, engaging, and bridging community. Implications for HSIs include cultivating community-based partnerships and perspectives as these are critical for the retention of Latinx students in STEM.

 
more » « less
Award ID(s):
1832528 1644990
NSF-PAR ID:
10363758
Author(s) / Creator(s):
 ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Journal of Hispanic Higher Education
Volume:
21
Issue:
2
ISSN:
1538-1927
Page Range / eLocation ID:
p. 135-150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Numerous national reports have identified the importance of significantly improving pathways that begin with Latinx students enrolling in 2‐year institutions and ultimately completing baccalaureate degrees in STEM fields at 4‐year institutions. Many programs using multiple interventions have been designed, implemented, and studied to achieve this goal. To synthesize what has been learned from studies of these programs, this article presents a systematic review of published studies of programs designed to support Latinx student success in 2‐year institutions and successful transfer to 4‐year institutions, particularly for STEM majors. A total of 49 quantitative, 9 qualitative, and 16 mixed‐methods studies published as reports, articles, or dissertations since 1980 were identified that met the criteria for the review. Studies covered a wide range of interventions, including mentoring, counseling, advising, study groups, tutoring, scholarships, orientations, career services, undergraduate research, articulation agreements, and transfer programs. Individually, these studies report positive influences on student success outcomes, including 2‐ and 4‐year graduation, transfer to a 4‐year institution, retention, and success in individual courses. However, the number of qualifying studies was surprisingly small, considering the importance of improving success of Latinx students and the length of time during which the problem has been repeatedly emphasized. Few interventions have been undertaken from explicitly assets‐based perspectives or theoretical frameworks. The lack of explicit frameworks underlying interventions—combined with a sole/primary focus on students—suggests many interventions were approached from a deficit‐based perspective. Further, the study found no pattern of replication studies that might confirm effectiveness of potentially promising interventions. Based on our analysis of evaluations presented in the studies, it does not appear that the research community has developed agreed‐upon methods to evaluate commonly agreed‐upon outcomes. Finally, no intervention has been sufficiently supported that widespread implementation could be recommended.

     
    more » « less
  2. To remain competitive in the global economy, the United States needs skilled technical workers in occupations requiring a high level of domain-specific technical knowledge to meet the country’s anticipated shortage of 5 million technically-credentialed workers. The changing demographics of the country are of increasing importance to addressing this workforce challenge. According to federal data, half the students earning a certificate in 2016-17 received credentials from community colleges where the percent enrollment of Latinx (a gender-neutral term referencing Latin American cultural or racial identity) students (56%) exceeds that of other post-secondary sectors. If this enrollment rate persists, then by 2050 over 25% of all students enrolled in higher education will be Latinx. Hispanic Serving Institutions (HSIs) are essential points of access as they enroll 64% of all Latinx college students, and nearly 50% of all HSIs are 2-year institutions. Census estimates predict Latinxs are the fastest-growing segment reaching 30% of the U.S. population while becoming the youngest group comprising 33.5% of those under 18 years by 2060. The demand for skilled workers in STEM fields will be met when workers reflect the diversity of the population, therefore more students—of all ages and backgrounds—must be brought into community colleges and supported through graduation: a central focus of community colleges everywhere. While Latinx students of color are as likely as white students to major in STEM, their completion numbers drop dramatically: Latinx students often have distinct needs that evolved from a history of discrimination in the educational system. HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation Advanced Technological Education Program (NSF ATE) being implemented by Florence Darlington Technical College and Science Foundation Arizona Center for STEM at Arizona State University to address the imperative that 2-year Hispanic Serving Institutions (HSIs) develop and improve engineering technology and related technician education programs in a way that is culturally inclusive. Interventions focus on strengthening grant-writing skills among CC HSIs to fund advancements in technician education and connecting 2-year HSIs with resources for faculty development and program improvement. A mixed methods approach will explore the following research questions: 1) What are the unique barriers and challenges for 2-year HSIs related to STEM program development and grant-writing endeavors? 2) How do we build capacity at 2-year HSIs to address these barriers and challenges? 3) How do mentoring efforts/styles need to differ? 4) How do existing ATE resources need to be augmented to better serve 2-year HSIs? 5) How do proposal submission and success rates compare for 2-year HSIs that have gone through the KS STEM planning process but not M-C, through the M-C cohort mentoring process but not KS, and through both interventions? The project will identify HSI-relevant resources, augment existing ATE resources, and create new ones to support 2-year HSI faculty as potential ATE grantees. To address the distinct needs of Latinx students in STEM, resources representing best practices and frameworks for cultural inclusivity, as well as faculty development will be included. Throughout, the community-based tradition of the ATE Program is being fostered with particular emphasis on forming, nurturing, and serving participating 2-year HSIs. This paper will discuss the need, baseline data, and early results for the three-year program, setting the stage for a series of annual papers that report new findings. 
    more » « less
  3. To remain competitive in the global economy, the United States needs skilled technical workers in occupations requiring a high level of domain-specific technical knowledge to meet the country’s anticipated shortage of 5 million technically-credentialed workers. The changing demographics of the country are of increasing importance to addressing this workforce challenge. According to federal data, half the students earning a certificate in 2016-17 received credentials from community colleges where the percent enrollment of Latinx (a gender-neutral term referencing Latin American cultural or racial identity) students (56%) exceeds that of other post-secondary sectors. If this enrollment rate persists, then by 2050 over 25% of all students enrolled in higher education will be Latinx. Hispanic Serving Institutions (HSIs) are essential points of access as they enroll 64% of all Latinx college students, and nearly 50% of all HSIs are 2-year institutions. Census estimates predict Latinxs are the fastest-growing segment reaching 30% of the U.S. population while becoming the youngest group comprising 33.5% of those under 18 years by 2060. The demand for skilled workers in STEM fields will be met when workers reflect the diversity of the population, therefore more students—of all ages and backgrounds—must be brought into community colleges and supported through graduation: a central focus of community colleges everywhere. While Latinx students of color are as likely as white students to major in STEM, their completion numbers drop dramatically: Latinx students often have distinct needs that evolved from a history of discrimination in the educational system. HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation Advanced Technological Education Program (NSF ATE) being implemented by Florence Darlington Technical College and Science Foundation Arizona Center for STEM at Arizona State University to address the imperative that 2-year Hispanic Serving Institutions (HSIs) develop and improve engineering technology and related technician education programs in a way that is culturally inclusive. Interventions focus on strengthening grant-writing skills among CC HSIs to fund advancements in technician education and connecting 2-year HSIs with resources for faculty development and program improvement. A mixed methods approach will explore the following research questions: 1) What are the unique barriers and challenges for 2-year HSIs related to STEM program development and grant-writing endeavors? 2) How do we build capacity at 2-year HSIs to address these barriers and challenges? 3) How do mentoring efforts/styles need to differ? 4) How do existing ATE resources need to be augmented to better serve 2-year HSIs? 5) How do proposal submission and success rates compare for 2-year HSIs that have gone through the KS STEM planning process but not M-C, through the M-C cohort mentoring process but not KS, and through both interventions? The project will identify HSI-relevant resources, augment existing ATE resources, and create new ones to support 2-year HSI faculty as potential ATE grantees. To address the distinct needs of Latinx students in STEM, resources representing best practices and frameworks for cultural inclusivity, as well as faculty development will be included. Throughout, the community-based tradition of the ATE Program is being fostered with particular emphasis on forming, nurturing, and serving participating 2-year HSIs. This paper will discuss the need, baseline data, and early results for the three-year program, setting the stage for a series of annual papers that report new findings. 
    more » « less
  4. This analysis reveals the informal instrumental and socio-emotional support that non-traditional (e.g. Latinx, Black, Indigenous, lower-income, and first-generation) college students receive from family members to combat experiences of marginalization and contribute towards their self-efficacy. Family support can be particularly important for underrepresented undergraduate Science, Technology, Engineering, and Math (STEM) students who have been shown to have higher risks of dropping out of their program and experience lower levels of success indicators (e.g. sense of belonging, self-concept, and STEM identity) compared to their white and Asian peers. Therefore, it is important to further investigate the nuances of family support contributing to non-traditional student retention and success. Utilizing a phenomenological approach, we used open-ended questions during focus groups with community college transfer students to gain their experiences with challenges and feelings of belonging in college and STEM. This article investigates the value family support holds for students in surviving STEM challenges by extending family to include romantic partners and extended family as well as applying the funds of knowledge framework to community college transfer students. 
    more » « less
  5. Community-based research (CBR) is a practice that engages researchers in collaborative, change-oriented, and inclusive projects in the community. One common example of CBR is university-community collaboration in which students and researchers come up with ideas, perspectives, and knowledge at each stage of the project with the goal to address community needs. The community is mainly involved in identifying the research questions for the projects and making decisions about how the results of the research-focused projects will be implemented. This paper presents a replication of a model focused on university-community collaboration, student engagement and Science, Technology, Engineering, and Math (STEM) attraction and retention using three research-focused projects addressing community needs. The three projects are (1) empathic design project aimed at improving quality greenspaces and pedestrian streetscape experience, (2) food justice project to study the disparities in food access between local regions, and (3) analyzing water quality in a local creek. The projects provided a unique opportunity for students to directly experience and contribute to the research process. In addition, students worked closely with their academic peers and community partners who served as collaborators and mentors. The study reports on the impact of the program on student learning and tendency to stay back in the community. The program's collaborative nature and its effect on students' satisfaction while working on specific projects are also examined. Furthermore, the program helped develop and sustain university-community partnerships. The community stakeholders participating in focus groups were satisfied with the process of identifying community projects and also expressed their satisfaction with the students’ work. 
    more » « less