skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Integrating Artificial Intelligence into Cybersecurity Curriculum: New Perspectives
As societies rely increasingly on computers for critical functions, the importance of cybersecurity becomes ever more paramount. Even in recent months there have been attacks that halted oil production, disrupted online learning at the height of COVID, and put medical records at risk at prominent hospitals. This constant threat of privacy leaks and infrastructure disruption has led to an increase in the adoption of artificial intelligence (AI) techniques, mainly machine learning (ML), in state-of-the-art cybersecurity approaches. Oftentimes, these techniques are borrowed from other disciplines without context and devoid of the depth of understanding as to why such techniques are best suited to solve the problem at hand. This is largely due to the fact that in many ways cybersecurity curricula have failed to keep up with advances in cybersecurity research and integrating AI and ML into cybersecurity curricula is extremely difficult. To address this gap, we propose a new methodology to integrate AI and ML techniques into cybersecurity education curricula. Our methodology consists of four components: i) Analysis of Literature which aims to understand the prevalence of AI and ML in cybersecurity research, ii) Analysis of Cybersecurity Curriculum that intends to determine the materials already present in the curriculum and the possible intersection points in the curricula for the new AI material, iii) Design of Adaptable Modules that aims to design highly adaptable modules that can be directly used by cybersecurity educators where new AI material can naturally supplement/substitute for concepts or material already present in the cybersecurity curriculum, and iv) Curriculum Level Evaluation that aims to evaluate the effectiveness of the proposed methodology from both student and instructor perspectives. In this paper, we focus on the first component of our methodology - Analysis of Literature and systematically analyze over 5000 papers that were published in the top cybersecurity conferences during the last five years. Our results clearly indicate that more than 78% of the cybersecurity papers mention AI terminology. To determine the prevalence of the use of AI, we randomly selected 300 papers and performed a thorough analysis. Our results show that more than 19% of the papers implement ML techniques. These findings suggest that AI and ML techniques should be considered for future integration into cybersecurity curriculum to better align with advancements in the field.  more » « less
Award ID(s):
2039606
NSF-PAR ID:
10363789
Author(s) / Creator(s):
Date Published:
Journal Name:
2022 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the findings of action research conducted to evaluate new modules created to teach learners how to apply machine learning (ML) and artificial intelligence (AI) techniques to malware data sets. The trend in the data suggest that learners with cybersecurity competencies may be better prepared to complete the AI/ML modules’ exercises than learners with AI/ML competencies. We describe the challenge of identifying prerequisites that could be used to determine learner readiness, report our findings, and conclude with the implications for instructional design and teaching practice.

     
    more » « less
  2. A tool that could suggest new personalized research directions and ideas by taking insights from the scientific literature could significantly accelerate the progress of science. A field that might benefit from such an approach is artificial intelligence (AI) research, where the number of scientific publications has been growing exponentially over the last years, making it challenging for human researchers to keep track of the progress. Here, we use AI techniques to predict the future research directions of AI itself. We develop a new graph-based benchmark based on real-world data -- the Science4Cast benchmark, which aims to predict the future state of an evolving semantic network of AI. For that, we use more than 100,000 research papers and build up a knowledge network with more than 64,000 concept nodes. We then present ten diverse methods to tackle this task, ranging from pure statistical to pure learning methods. Surprisingly, the most powerful methods use a carefully curated set of network features, rather than an end-to-end AI approach. It indicates a great potential that can be unleashed for purely ML approaches without human knowledge. Ultimately, better predictions of new future research directions will be a crucial component of more advanced research suggestion tools. 
    more » « less
  3. Abstract

    A tool that could suggest new personalized research directions and ideas by taking insights from the scientific literature could profoundly accelerate the progress of science. A field that might benefit from such an approach is artificial intelligence (AI) research, where the number of scientific publications has been growing exponentially over recent years, making it challenging for human researchers to keep track of the progress. Here we use AI techniques to predict the future research directions of AI itself. We introduce a graph-based benchmark based on real-world data—the Science4Cast benchmark, which aims to predict the future state of an evolving semantic network of AI. For that, we use more than 143,000 research papers and build up a knowledge network with more than 64,000 concept nodes. We then present ten diverse methods to tackle this task, ranging from pure statistical to pure learning methods. Surprisingly, the most powerful methods use a carefully curated set of network features, rather than an end-to-end AI approach. These results indicate a great potential that can be unleashed for purely ML approaches without human knowledge. Ultimately, better predictions of new future research directions will be a crucial component of more advanced research suggestion tools.

     
    more » « less
  4. This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks. 
    more » « less
  5. In September 2019, the fourth and final workshop on the Future of Mechatronics and Robotics Education (FoMRE) was held at a Lawrence Technological University in Southfield, MI. This workshop was organized by faculty at several universities with financial support from industry partners and the National Science Foundation. The purpose of the workshops was to create a cohesive effort among mechatronics and robotics courses, minors and degree programs. Mechatronics and Robotics Engineering (MRE) is an integration of mechanics, controls, electronics, and software, which provides a unique opportunity for engineering students to function on multidisciplinary teams. Due to its multidisciplinary nature, it attracts diverse and innovative students, and graduates better-prepared professional engineers. In this fast growing field, there is a great need to standardize educational material and make MRE education more widely available and easier to adopt. This can only be accomplished if the community comes together to speak with one clear voice about not only the benefits, but also the best ways to teach it. These efforts would also aid in establishing more of these degree programs and integrating minors or majors into existing computer science, mechanical engineering, or electrical engineering departments. The final workshop was attended by approximately 50 practitioners from industry and academia. Participants identified many practical skills required for students to succeed in an MRE curriculum and as practicing engineers after graduation. These skills were then organized into the following categories: professional, independent learning, controller design, numerical simulation and analysis, electronics, software development, and system design. For example, professional skills include technical reports, presentations, and documentation. Independent learning includes reading data sheets, performing internet searches, doing a literature review, and having a maker mindset. Numerical simulation skills include understanding data, presenting data graphically, solving and simulating in software such as MATLAB, Simulink and Excel. Controller design involves selecting a controller, tuning a controller, designing to meet specifications, and understanding when the results are good enough. Electronics skills include selecting sensors, interfacing sensors, interfacing actuators, creating printed circuit boards, wiring on a breadboard, soldering, installing drivers, using integrated circuits, and using microcontrollers. Software development of embedded systems includes agile program design, state machines, analyzing and evaluating code results, commenting code, troubleshooting, debugging, AI and machine learning. Finally, system design includes prototyping, creating CAD models, design for manufacturing, breaking a system down into subsystems, integrating and interfacing subcomponents, having a multidisciplinary perspective, robustness, evaluating tradeoffs, testing, validation, and verification, failure, effect, and mode analysis. A survey was prepared and sent out to the participants from all four workshops as well as other robotics faculty, researchers and industry personnel in order to elicit a broader community response. Because one of the biggest challenges in mechatronics and robotics education is the absence of standardized curricula, textbooks, platforms, syllabi, assignments, and learning outcomes, this was a vital part of the process to achieve some level of consensus. This paper presents an introduction to MRE education, related work on existing programs, methods, results of the practical skills survey, and then draws conclusions based upon these results. It aims to create the foundation for standardizing the development of student skills in mechatronics and robotics curricula across institutions, disciplines, majors and minors. The survey was completed by 94 participants and it was clear that there is a consensus that the primary skills students should have upon completion of MRE courses or a program is a broader multidisciplinary systems-level perspective, an ability to problem solve, and an ability to design a system to meet specifications. 
    more » « less