skip to main content


Title: Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm
This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks.  more » « less
Award ID(s):
2114974
NSF-PAR ID:
10404027
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 IEEE Frontiers in Education Conference (FIE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contribution: A novel proactive and collaborative learning paradigm was proposed to engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary artificial intelligence (AI)-cybersecurity knowledge. Specifically, the proposed learning paradigm contains: 1) an immersive learning environment to motivate the students for exploring AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects and 2) a proactive education paradigm designed with the use of collaborative learning activities based on game-based learning and social constructivism. Background: Increasing evidence shows that AI techniques can be manipulated, evaded, and misled, which can result in new and profound security implications. There is an education and training gap to foster a qualified cyber-workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. Efforts have been made to incorporate a comprehensive curriculum to meet the demand. There still remain essential challenges for effectively educating students on the interaction of AI and cybersecurity. Intended Outcomes: A novel proactive and collaborative learning paradigm is proposed to educate and train a qualified cyber-workforce in this new era where security breaches, privacy violations, and AI have become commonplace. Application Design: The development of this learning paradigm is grounded in the pedagogical approaches of technology-mediated learning and social constructivism. Findings: Although the research work is still ongoing, the prototype learning paradigm has shown encouraging results in promoting the learners’ engagement in applied AI learning. 
    more » « less
  2. Artificial Intelligence (AI) enhanced systems are widely adopted in post-secondary education, however, tools and activities have only recently become accessible for teaching AI and machine learning (ML) concepts to K-12 students. Research on K-12 AI education has largely included student attitudes toward AI careers, AI ethics, and student use of various existing AI agents such as voice assistants; most of which has focused on high school and middle school. There is no consensus on which AI and Machine Learning concepts are grade-appropriate for elementary-aged students or how elementary students explore and make sense of AI and ML tools. AI is a rapidly evolving technology and as future decision-makers, children will need to be AI literate[1]. In this paper, we will present elementary students’ sense-making of simple machine-learning concepts. Through this project, we hope to generate a new model for introducing AI concepts to elementary students into school curricula and provide tangible, trainable representations of ML for students to explore in the physical world. In our first year, our focus has been on simpler machine learning algorithms. Our desire is to empower students to not only use AI tools but also to understand how they operate. We believe that appropriate activities can help late elementary-aged students develop foundational AI knowledge namely (1) how a robot senses the world, and (2) how a robot represents data for making decisions. Educational robotics programs have been repeatedly shown to result in positive learning impacts and increased interest[2]. In this pilot study, we leveraged the LEGO® Education SPIKE™ Prime for introducing ML concepts to upper elementary students. Through pilot testing in three one-week summer programs, we iteratively developed a limited display interface for supervised learning using the nearest neighbor algorithm. We collected videos to perform a qualitative evaluation. Based on analyzing student behavior and the process of students trained in robotics, we found some students show interest in exploring pre-trained ML models and training new models while building personally relevant robotic creations and developing solutions to engineering tasks. While students were interested in using the ML tools for complex tasks, they seemed to prefer to use block programming or manual motor controls where they felt it was practical. 
    more » « less
  3. Knowledge graphs gained popularity in recent years and have been useful for concept visualization and contextual information retrieval in various applications. However, constructing a knowledge graph by scraping long and complex unstructured texts for a new domain in the absence of a well-defined ontology or an existing labeled entity-relation dataset is difficult. Domains such as cybersecurity education can harness knowledge graphs to create a student-focused interactive and learning environment to teach cybersecurity. Learning cybersecurity involves gaining the knowledge of different attack and defense techniques, system setup and solving multi-facet complex real-world challenges that demand adaptive learning strategies and cognitive engagement. However, there are no standard datasets for the cybersecurity education domain. In this research work, we present a bottom-up approach to curate entity-relation pairs and construct knowledge graphs and question-answering models for cybersecurity education. To evaluate the impact of our new learning paradigm, we conducted surveys and interviews with students after each project to find the usefulness of bot and the knowledge graphs. Our results show that students found these tools informative for learning the core concepts and they used knowledge graphs as a visual reference to cross check the progress that helped them complete the project tasks. 
    more » « less
  4. Hands-on practice is a critical component of cybersecurity education. Most of the existing hands-on exercises or labs materials are usually managed in a problem-centric fashion, while it lacks a coherent way to manage existing labs and provide productive lab exercising plans for cybersecurity learners. With the advantages of big data and natural language processing (NLP) technologies, constructing a large knowledge graph and mining concepts from unstructured text becomes possible, which motivated us to construct a machine learning based lab exercising plan for cybersecurity education. In the research presented by this paper, we have constructed a knowledge graph in the cybersecurity domain using NLP technologies including machine learning based word embedding and hyperlink-based concept mining. We then utilized the knowledge graph during the regular learning process based on the following approaches: 1. We constructed a web-based front-end to visualize the knowledge graph, which allows students to browse and search cybersecurity-related concepts and the corresponding interdependence relations; 2. We created a personalized knowledge graph for each student based on their learning progress and status; 3.We built a personalized lab recommendation system by suggesting more relevant labs based on students’ past learning history to maximize their learning outcomes. To measure the effectiveness of the proposed solution, we have conducted a use case study and collected survey data from a graduate-level cybersecurity class. Our study shows that, by leveraging the knowledge graph for the cybersecurity area study, students tend to benefit more and show more interests in cybersecurity area. 
    more » « less
  5. An increasingly global environment expects graduating Engineering students to perform, live and work across cultures. Most intercultural competence research and associated global engineering education is focused on developing the global engineering skill set through long-term travel experiences such as study abroad programs. These programs can be expensive from both a time and money standpoint, limiting the participation to more privileged members of a community, and are not scalable to support broader participation. This work-in-progress addresses this research gap by focusing on the development of the students’ global learner mindset without requiring extensive travel. The project will investigate four different global engagement interventions, including the use of engineering case studies, the intentional formation of multi-national student teams, a Collaborative Online International Learning (COIL) research project, and a community engaged project within a short course. These interventions can be used to develop a holistic global learner mindset and global engineering education approach to foster global competence in undergraduate engineering students. The four global engagement interventions will be grounded in the global engineering competency (GEC) theoretical framework and assessed for their ability to foster a global learner mindset in engineering students. A mixed-methods approach will be used to assess students’ global learner mindset and skill set. This research will use the Global Engagement Survey (GES), the Global Engineering Competency Scale (GECS) and specific questions developed by the researchers to evaluate improvements in the participating students’ global engineering skill set and answer specific research questions including: 1) To what extent can global competence be developed in engineering students through the use of the proposed global engagement interventions; and 2) what are the relative strengths of each of the proposed global engagement interventions in developing global engineering competence? Combined, these research measures will provide both an accurate picture of how each global engagement intervention impacts the formation of a global learner mindset in engineering education, and also its associated ability to develop and/or improve global engineering skills. The outcomes of this study will generate valuable knowledge to understand how each global engagement intervention impacts the formation of global engineering competence. In this work-in-progress study, the authors discuss the four global engagement interventions with specific learning objectives that have been mapped to the overall student outcomes for the project. These objectives have also been mapped to the GES and GECS instruments. Finally the faculty members have developed qualitative tools to augment the GES and GECS to identify the global engineering skill sets each intervention is generating. This paper lays the foundation before implementing the interventions and performing their associated assessments over the several subsequent semesters. 
    more » « less