skip to main content

Title: Interacting phenotypes and the coevolutionary process: Interspecific indirect genetic effects alter coevolutionary dynamics
 ;  ;  ;  ;  
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
p. 429-444
Sponsoring Org:
National Science Foundation
More Like this
  1. Kolodny, Rachel (Ed.)
    The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP 11&12 and CAMEO experiments and outperformed other top methods from CASP12 by at least 58.4% for the CASP 11&12 targets and 44.4% for the CAMEO targets in the top- L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top- L /5 long-range contact predictions. It was also shown that a simple re-training of the TripletRes model with more proteins can lead to further improvement with precisions comparable to state-of-the-art methods developed after CASP13. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium-more »and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library.« less
  2. Abstract The accurate and reliable prediction of the 3D structures of proteins and their assemblies remains difficult even though the number of solved structures soars and prediction techniques improve. In this study, a free and open access web server, AWSEM-Suite, whose goal is to predict monomeric protein tertiary structures from sequence is described. The model underlying the server’s predictions is a coarse-grained protein force field which has its roots in neural network ideas that has been optimized using energy landscape theory. Employing physically motivated potentials and knowledge-based local structure biasing terms, the addition of homologous template and co-evolutionary restraints to AWSEM-Suite greatly improves the predictive power of pure AWSEM structure prediction. From the independent evaluation metrics released in the CASP13 experiment, AWSEM-Suite proves to be a reasonably accurate algorithm for free modeling, standing at the eighth position in the free modeling category of CASP13. The AWSEM-Suite server also features a front end with a user-friendly interface. The AWSEM-Suite server is a powerful tool for predicting monomeric protein tertiary structures that is most useful when a suitable structure template is not available. The AWSEM-Suite server is freely available at: