skip to main content


Title: Ultrafast Dynamics of Colloidal Copper Nanorods: Intraband versus Interband Excitation
  more » « less
Award ID(s):
2102526
NSF-PAR ID:
10363931
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small Science
Volume:
2
Issue:
3
ISSN:
2688-4046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a function of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasiparticles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity. By subtracting the low-frequency sharp Drude and phonon peaks at low temperatures, we reveal two intermediate quasilinear interband contributions separated by a kink at 0.2 eV. Using Wannier tight-binding models based on first-principle calculations, we link the optical conductivity above and below 0.2 eV to interband transitions near the double Weyl fermion and a threefold fermion, respectively. We analyze and determine the chemical potential relative to the energy of the threefold fermion, revealing the importance of transitions between a linearly dispersing band and a flat band. More strikingly, below 0.1 eV our data are best explained if spin-orbit coupling is included, suggesting that at these energies, the optical response is governed by transitions between a previously unobserved fourfold spin-3/2 node and a Weyl node. Our comprehensive combined experimental and theoretical study provides a way to resolve different types of multifold fermions in CoSi at different energy. More broadly, our results provide the necessary basis to interpret the burgeoning set of optical and transport experiments in chiral topological semimetals.

     
    more » « less
  2. Abstract

    Here, the observation of spin‐polarized emission for the Au25(SC8H9)18monolayer‐protected cluster (MPC) is reported. Variable‐temperature variable‐field magnetic circular photoluminescence (VTV‐MCPL) measurements are combined with VT‐PL spectroscopy to provide state‐resolved characterization of the transient electronic structure and spin‐polarized electron‐hole recombination dynamics of Au25(SC8H9)18. Through analysis of VTV‐MCPL measurements, a low energy (1.64 eV) emission peak is assigned to intraband relaxation between core‐metal‐localized superatom‐D to ‐P orbitals. Two higher energy interband components (1.78 eV, 1.94 eV) are assigned to relaxation from superatom‐D orbitals to states localized to the inorganic semirings. For both intraband superatom‐based or interband relaxation mechanisms, the extent of spin‐polarization, quantified as the degree of circular polarization (DOCP), is determined by state‐specific electron‐vibration coupling strengths and energy separations of bright and dark electronic fine‐structure levels. At low temperatures (<60 K), metal–metal superatom‐based intraband transitions dominate the global PL emission. At higher temperatures (>60 K), interband ligand‐based emission is dominant. In the low‐temperature PL regime, increased sample temperature results in larger global PL intensity. In the high‐temperature regime, increased temperature quenches interband radiative recombination. The relative intensity for each PL mechanism is discussed in terms of state‐specific electronic‐vibrational coupling strengths and related to the total angular momentum, quantified by Landég‐factors.

     
    more » « less
  3. Abstract

    We performed polarized reflection and transmission measurements on the layered conducting oxide PdCoO2thin films. For theab-plane, an optical peak near Ω ≈ 750 cm−1drives the scattering rate 1/τ(ω) and effective massm*(ω) of the Drude carrier to increase and decrease respectively forω ≧ Ω. For thec-axis, a longitudinal optical phonon (LO) is present at Ω as evidenced by a peak in the loss function Im[−1/εc(ω)]. Further polarized measurements in different light propagation (q) and electric field (E) configurations indicate that the Peak at Ω results from an electron-phonon coupling of theab-plane carrier with thec-LO phonon, which leads to the frequency-dependent 1/τ(ω) andm*(ω). This unusual interaction was previously reported in high-temperature superconductors (HTSC) between a non-Drude, mid-infrared (IR) band and ac-LO. On the contrary, it is the Drude carrier that couples in PdCoO2. The coupling between theab-plane Drude carrier andc-LO suggests that thec-LO phonon may play a significant role in the characteristicab-plane electronic properties of PdCoO2, including the ultra-high dc-conductivity, phonon-drag, and hydrodynamic electron transport.

     
    more » « less
  4. Abstract

    It is a great challenge to obtain broadband response perovskite photodetectors (PPDs) due to the relatively large bandgaps of the most used methylammonium lead halide perovskites. The response range of the reported PPDs is limited in the ultraviolet–visible range. Here, highly sensitive PPDs are successfully fabricated with low bandgap (≈1.25 eV) (FASnI3)0.6(MAPbI3)0.4perovskite as active layers, exhibiting a broadband response from 300 to 1000 nm. The performance of the PPDs can be optimized by adjusting the thicknesses of the perovskite and C60layers. The optimized PPDs with 1000 nm thick perovskite layer and 70 nm thick C60layer exhibit an almost flat external quantum efficiency (EQE) spectrum from 350 to 900 nm with EQE larger than 65% under −0.2 V bias. Meanwhile, the optimized PPDs also exhibit suppressed dark current of 3.9 nA, high responsivity (R) of over 0.4 A W−1, high specific detectivity (D*) of over 1012Jones in the near‐infrared region under −0.2 V. Such highly sensitive broadband response PPDs, which can work well as self‐powered conditions, offer great potential applications in multicolor light detection.

     
    more » « less
  5. Delafossite structured ternary nitrides, ABN 2 , have been of recent experimental investigation for applications such as tandem solar and photoelectrochemical cells. We present a thorough first principles computational investigation of their stability, electronic structure, and optical properties. Nine compounds, where A = Cu, Ag, Au and B = V, Nb, Ta, were studied. For three of these compounds, CuTaN 2 , CuNbN 2 , and AgTaN 2 , our computations agree well with experimental results. Optimized lattice parameters, formation energies, and mechanical properties have been computed using the generalized gradient approximation (GGA). Phonon density of states computed at zero-temperature shows that all compounds are dynamically unstable at low temperatures. Including finite-temperature anharmonic effects stabilizes all compounds at 300 K, with the exception of AgVN 2 . Analysis of Crystal Orbital Hamiltonian Populations (COHP) provides insight into the bonding and antibonding characters of A–N and B–N pairs. Instability at low temperatures can be attributed to strong A–N antibonding character near the Fermi energy. B–N bonding is found to be crucial in maintaining stability of the structure. AgVN 2 is the only compound to display significant B–N antibonding below the Fermi energy, as well as the strongest degree of A–N antibonding, both of which provide explanation for the sustained instability of this compound up to 900 K. Hybrid functional calculations of electronic and optical properties show that real static dielectric constants in the semiconductors are related to corresponding band gaps through the Moss relation. CuTaN 2 , CuNbN 2 , AgTaN 2 , AgNbN 2 , AgVN 2 , AuTaN 2 , and AuNbN 2 exhibit indirect electronic band gaps while CuVN 2 and AuVN 2 are metallic. Imaginary parts of the dielectric function are characterized by d–d interband transitions in the semiconductors and d–d intraband transitions in the metals. Four compounds, CuTaN 2 , CuNbN 2 , AgTaN 2 , and AgNbN 2 , are predicted to exhibit large light absorption in the range of 1.0 to 1.7 eV, therefore making these materials good candidates for solar-energy conversion applications. Two compounds, AuTaN 2 and AuNbN 2 , have band gaps and absorption onsets near the ideal range for obtaining high solar-cell conversion efficiency, suggesting that these compounds could become potential candidates as absorber materials in tandem solar cells or for band-gap engineering by alloying. 
    more » « less