Abstract. Identifying the causes for historical sea-level changes in coastal tide-gauge records is important for constraining oceanographic, geologic, and climatic processes. The Río de la Plata estuary in South America features the longest tide-gauge records in the South Atlantic. Despite the relevance of these data for large-scale circulation and climate studies, the mechanisms underlying relative sea-level changes in this region during the past century have not been firmly established. I study annual data from tide gauges in the Río de la Plata and stream gauges along the Río Paraná and Río Uruguay to establish relationships between river streamflow and sea level over 1931–2014. Regression analysis suggests that streamflow explains 59 %±17 % of the total sea-level variance at Buenos Aires, Argentina, and 28 %±21 % at Montevideo, Uruguay (95 % confidence intervals). A long-term streamflow increase effected sea-level trends of 0.71±0.35 mm yr−1 at Buenos Aires and 0.48±0.38 mm yr−1 at Montevideo. More generally, sea level at Buenos Aires and Montevideo respectively rises by (7.3±1.8)×10-6 m and (4.7±2.6)×10-6 m per 1 m3 s−1 streamflow increase. These observational results are consistent with simple theories for the coastal sea-level response to streamflow forcing, suggesting a causal relationship between streamflow and sea level mediated by ocean dynamics. Findings advance understanding of local, regional, and global sea-level changes; clarify sea-level physics; inform future projections of coastal sea level and the interpretation of satellite data and proxy reconstructions; and highlight future research directions. Specifically, local and regional river effects should be accounted for in basin-scale and global mean sea-level budgets as well as reconstructions based on sparse tide-gauge records.
more »
« less
Variability, Trend, and Extremes of the South American Vegetation‐Climate System: Results From a Coupled Regional Model
Abstract South America, especially the Amazon region, is considered a hotspot of biosphere–atmosphere interactions and presents a unique challenge for regional climate modeling. Here, we evaluate the performance of a regional model in simulating the climate–vegetation system in South America and use the model to investigate the potential role of large‐scale warming in the recently observed trend of hydroclimate and vegetation. Compared with prescribing vegetation based on observational data, adding the predictive vegetation capacity to the regional climate model enabled the model to simulate the vegetation response to climate while sustaining the model performance in reproducing the mean, variability and extremes of the regional climate. The coupled vegetation–climate model captures the recent trends in hydroclimate and vegetation productivity and their spatial contrasts, including a trend toward warmer, drier, and less productive conditions in the Amazon and Nordeste regions and a trend toward cooler, wetter, and more productive condition in the La Plata region. Results from sensitivity experiment driven by detrended boundary forcing for the regional climate suggest that much of the trends in the Amazon and Nordeste regions can be attributed to the effects of large‐scale warming, but contribution from decadal variability also plays a role especially for the most recent decade. However, the trend in the La Plata region cannot be attenuated by the removal of the boundary forcing trend, indicating the role of large‐scale circulation pattern changes. The recent trends in vegetation productivity may be early manifestation of future changes in the Amazon and surrounding regions.
more »
« less
- Award ID(s):
- 1917781
- PAR ID:
- 10363933
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 127
- Issue:
- 4
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract This study investigates the potential effects of historical deforestation in South America using a regional climate model driven with reanalysis data. Two different sources of data were used to quantify deforestation during the 1980s to 2010s, leading to two scenarios of forest loss: smaller but spatially continuous in scenario 1 and larger but spatially scattered in scenario 2. The model simulates a generally warmer and drier local climate following deforestation. Vegetation canopy becomes warmer due to reduced canopy evapotranspiration, and ground becomes warmer due to more radiation reaching the ground. The warming signal for surface air is weaker than for ground and vegetation, likely due to reduced surface roughness suppressing the sensible heat flux. For surface air over deforested areas, the warming signal is stronger for the nighttime minimum temperature and weaker or even becomes a cooling signal for the daytime maximum temperature, due to the strong radiative effects of albedo at midday, which reduces the diurnal amplitude of temperature. The drying signals over deforested areas include lower atmospheric humidity, less precipitation, and drier soil. The model identifies the La Plata basin as a region remotely influenced by deforestation, where a simulated increase of precipitation leads to wetter soil, higher ET, and a strong surface cooling. Over both deforested and remote areas, the deforestation-induced surface climate changes are much stronger in scenario 2 than scenario 1; coarse-resolution data and models (such as in scenario 1) cannot represent the detailed spatial structure of deforestation and underestimate its impact on local and regional climates.more » « less
-
For the past few decades, many researchers have sought to understand how tropical hydroclimate responds to climate change via lakes, marine sediments, and speleothems records. Speleothem δ18O records throughout South America have shown that regional rainfall responds to Northern Hemisphere forcing on the millennial scale. Areas under the influence of the South Atlantic Convergence Zone (SACZ) have also shown a close relationship with local insolation on longer timescales. However, apart from the Cruz et al. (2007) record in Southern Brazil, long-term speleothem records throughout the continent have relied primarily on stable oxygen isotopes and are therefore limited to describing large-scale regional variability in rainfall. As such, many areas in South America still lack long-term records of local hydroclimate, which is critical to understanding how different components of the monsoon system respond to orbital and millennial-scale climate change. One proxy that has gained more attention in recent years is trace metal-to-calcium ratios (TM/Ca). Sr, Mg, and Ba to Ca ratios in speleothems are known in certain situations to respond to the degree of Prior Calcite Precipitation (PCP) above a drip site, a phenomenon directly tied to local aridity. In this study, we have obtained high-resolution TM/Ca measurements to pair with stable isotopes from samples spanning 23 to 66 ka from Huagapo Cave in the Peruvian Andes (11.27°S; 75.79°W). TM/Ca ratios in these samples are strongly correlated (R2>0.89), making them suitable for use as PCP proxies. We see that decreases in δ18O during Heinrich events are accompanied by a drop in TM/Ca. The period defined by the MIS 4/3 transition is accompanied by a simultaneous increase in TM/Ca and δ18O. TM/Ca and δ18O negatively correlate with local insolation for the entire record. Interestingly, the Paraíso Cave record from the Amazon Basin shows no correlation between regional or local hydroclimate and insolation during the last glacial period. The discrepancy between the two records and the close relationship between TM/Ca, δ18O, and local insolation in Huagapo samples, may call for a revised interpretation of Andes speleothem δ18O variability, which was originally thought to reflect rainout over the Amazon Basin.more » « less
-
Abstract Recent years have witnessed extreme heatwaves in Europe and western North America. This study shows that these regions stand out in the zonally asymmetric component of the long-term trend of boreal summer surface temperature, and that intraseasonal timescale processes play an important role in shaping the zonally asymmetric trend pattern. However, these two regions have warmed by different mechanisms. Over Europe, the warming is mostly caused by the positive trend of the net (downward minus upward) surface shortwave radiation weighted by its intraseasonal timescale connection with the skin temperature. The long-term warming in western North America has been caused by the declining surface latent heat flux (weakened evaporative cooling) weighted by its intraseasonal connection with the skin temperature. These mechanisms are consistent with those identified in earlier studies of individual extreme events in the two regions, indicating that part of the long trends are a manifestation of extreme events. The overall findings indicate that to make accurate projections of regional climate change using climate model simulations, it is critical to ensure that the models also accurately simulate intraseasonal variability.more » « less
-
The Southwestern Atlantic Ocean (SWA), is considered one of the most productive areas of the world, with a high abundance of ecologically and economically important fish species. Yet, the biological responses of this complex region to climate variability are still uncertain. Here, using 24 years of satellite‐derived Chl‐a data, we classified the SWA into 9 spatially coherent regions based on the temporal variability of Chl‐a concentration, as revealed by SOM (Self‐Organizing Maps) analysis. These biogeographical regions were the basis of a regional trend analysis in phytoplankton biomass, phenological indices, and environmental forcing variations. A general positive trend in phytoplankton concentration was observed, especially in the highly productive areas of the northern shelf‐break, where phytoplankton biomass has increased at a rate of up to 0.42 ± 0.04 mg m−3per decade. Significant positive trends in sea surface temperature were observed in 4 of the 9 regions (0.08–0.26 °C decade−1) and shoaling of the mixing layer depth in 5 of the 9 regions (−1.50 to −3.36 m decade−1). In addition to the generally positive trend in Chl‐a, the most conspicuous change in the phytoplankton temporal patterns in the SWA is a delay in the autumn bloom (between 15 ± 3 and 24 ± 6 days decade−1, depending on the region). The observed variations in phytoplankton phenology could be attributed to climate‐induced ocean warming and extended stratification period. Our results provided further evidence of the impact of climate change on these highly productive waters.more » « less