Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Congo basin hosts one of the largest terrestrial precipitation centers. Yet, the mechanisms that start the rainy seasons in Congo have not been studied systematically. We show that the transition from the dry to the rainy season over the southern Congo is initiated by a decrease in moisture export towards the Sahel, about three to four months before the rainy season onset (RSO), referred to as the pre-transition period. During this period, evapotranspiration (ET) is low due to low surface solar radiation, resulting from low insolation and high amounts of low-level clouds. In the early transition period, one to three months before the RSO, column water vapor increases due to increased oceanic moisture transport. Meanwhile, ET starts increasing due to increases in surface radiation and vegetation photosynthesis, despite a lack of soil moisture increases. Finally, in the late transition period, about one month before the RSO, ET continues to increase, contributing equally to atmospheric moisture needed for deep convection as advected oceanic moisture. Additionally, the formation of the African Easterly-Jet South and the southward movement of the Congo Air Boundary increase vertical wind shear and provide large-scale dynamic lifting of the warm and humid air from Congo. The frequency of deep convection increases rapidly, leading to the start of the rainy season. Therefore, the RSO over southern-hemispheric Congo basin is a result of combined large-scale atmospheric circulation change driven by increasing land–ocean surface temperature gradient and vegetation response to the seasonal change of insolation.more » « less
-
Abstract The Pacific–South American (PSA) pattern is a key mode of climate variability in the mid-to-high latitudes of the Southern Hemisphere, impacting circulation and rainfall anomalies over South America. However, the effect of South American rainfall on the PSA has not been previously explored. This study focuses on the impact of rainfall over southeastern South American (SESA) during the austral summer (December–February). Observational analyses reveal that the PSA pattern remains confined to higher southern latitudes when SESA rainfall anomalies are weak. In contrast, strong SESA rainfall anomalies can generate a quasi-stationary Rossby wave train, which represents a cross-equatorial extension of the PSA. This wave train propagates along a southwest–northeast great circle path from higher latitudes, crosses the equator, and reaches the tropical Atlantic, southern Europe, and northern Africa, inducing a wet and cool weather condition over western and southern Europe. The observed wave train can be reproduced by the linear baroclinic model (LBM) simulations. Given the PSA’s connection to tropical forcing over the central Pacific, we examine differences in the wave response to central Pacific forcing alone versus combined central Pacific and SESA forcings. By incorporating SESA forcing, the wave train originally triggered by central Pacific forcing is amplified and extended. Our findings confirm the significant role of SESA rainfall anomalies in extending the PSA pattern to the Northern Hemisphere and highlight the South American continent as a land bridge that links circulation anomalies across the Pacific and Atlantic Oceans and the Southern and Northern Hemispheres.more » « less
-
ABSTRACT Current and near future climate policy will fundamentally influence the integrity of ecological systems. The Neotropics is a region where biodiversity is notably high and precipitation regimes largely determine the ecology of most organisms. We modeled possible changes in the severity of seasonal aridity by 2100 throughout the Neotropics and used birds to illustrate the implications of contrasting climate scenarios for the region's biodiversity. Under SSP‐8.5, a pessimistic and hopefully unlikely scenario, longer dry seasons (> 5%), and increased moisture stress are projected for about 75% of extant lowland forests throughout the entire region with impacts on 66% of the region's lowland forest avifauna, which comprises over 3000 species and about 30% of all bird species globally. Longer dry seasons are predicted to be especially significant in the Caribbean, Upper South America, and Amazonia. In contrast, under SSP‐2.6—a scenario with significant climate mitigation—only about 10% of the entire region's forest area and 3% of its avifauna will be exposed to longer dry seasons. The extent of current forest cover that may plausibly function as precipitation‐based climate refugia (i.e., < 5% change in length of dry periods) for constituent biodiversity is over 4 times greater under SSP‐2.6 than with SSP‐8.5. Moreover, the proportion of currently protected areas that overlap putative refugia areas is nearly 4 times greater under SSP‐2.6. Taken together, our results illustrate that climate policy will have profound outcomes for biodiversity throughout the Neotropics—even in areas where deforestation and other immediate threats are not currently in play.more » « less
-
Abstract Large spatio‐temporal gradients in the Congo basin vegetation and rainfall are observed. However, its water‐balance (evapotranspiration minus precipitation, orET − P) is typically measured at basin‐scales, limited primarily by river‐discharge data, spatial resolution of terrestrial water storage measurements, and poorly constrainedET. We use observations of the isotopic composition of water vapor to quantify the spatio‐temporal variability of net surface water fluxes across the Congo Basin between 2003 and 2018. These data are calibrated at basin scale using satellite gravity and total Congo river discharge measurements and then used to estimate time‐varyingET − Pover four quadrants representing the Congo Basin, providing first estimates of this kind for the region. We find that the multi‐year record, seasonality, and interannual variability ofET − Pfrom both the isotopes and the gravity/river discharge based estimates are consistent. Additionally, we use precipitation and gravity‐based estimates with our water vapor isotope‐basedET − Pto calculate time and space averagedETand net river discharge within the Congo Basin. These quadrant‐scale moisture flux estimates indicate (a) substantial recycling of moisture in the Congo Basin (temporally and spatially averagedET/P > 70%), consistent with models and visible light‐basedETestimates, and (b) net river outflow is largest in the Western Congo where there are more rivers and higher flow rates. Our results confirm the importance ofETin modulating the Congo water cycle relative to other water sources.more » « less
-
Abstract During boreal winter (December–February), the South American monsoon system (SAMS) reaches its annual maximum when upper‐tropospheric westerly winds prevail over the equatorial Atlantic. Atmospheric dynamic model simulations suggest that Rossby waves generated over South America can propagate to and potentially influence weather patterns in the Northern Hemisphere (NH). However, observational evidence has been absent previously. Here we focus on southeastern South American (SESA) precipitation anomalies, which can characterize intraseasonal rainfall variability of the SAMS. Since tropical “westerly duct” and convective heating are important factors for cross‐equatorial propagation of Rossby wave (CEPRW), we identify two groups of events based on the two factors. By comparing the events associated with both SESA rainfall and tropical westerlies to the events associated with tropical westerlies only, we find that an anomalous Rossby wave train is triggered by precipitation anomalies over SESA, propagates in the southwest–northeast direction, and subsequently crosses the equator. Over a period of 4 days, near‐surface temperature over northwestern Africa and western Europe becomes warmer, accompanied by increased surface downward longwave radiation and precipitable water. The equatorward propagating Eliassen–Palm flux anomalies originated from SESA support the evidence of CEPRW. Simulations using a time‐dependent linear barotropic model forced by prescribed divergence anomalies over SESA further confirm that SESA rainfall can influence the NH weather patterns through CEPRW. Knowledge of this study will help us better understand and model interhemispheric teleconnections over the American–Atlantic–African/European sector.more » « less
-
Abstract The Congo Basin hosts the world's second largest rainforest and is a major rainfall center. However, the primary sources of moisture needed to maintain this forest, either from evapotranspiration (ET) or advection from the ocean, remain unclear. We use satellite observations of the deuterium content of water vapor (), solar induced fluorescence (SIF), precipitation, and atmospheric reanalysis to examine the relative contribution of ET to moisture in the free troposphere. We find that SIF, an indicator of photosynthesis, covaries within early rainy seasons, suggesting that ET is an important contributor to atmospheric moisture in both the spring and fall rainy seasons. However, the relative contribution of ET to the free tropospheric moisture varies between the two rainy seasons. Observedrelative to a range of observationally constrained, isotopic mixing models representative of water vapor coming from land suggests thatof the free tropospheric moisture come from ET in February, andin April, versusin August andin October. Reanalysis indicate that this difference between seasons is due to increased advection of ocean air during the fall season, thus reducing the relative contribution of ET to the Congo Basin in the fall. In addition, ET is the primary atmospheric moisture source in the winter and summer dry seasons, consistent with estimates reported in literature. Our results highlight the importance of ET from the Congo rainforest as an important source of moisture for initiating the rainy seasons.more » « less
-
Abstract Atlantic Niños dominate the equatorial Atlantic variability during boreal summer (June–August). The coupled ocean‐atmosphere processes associated with Atlantic Niños have been extensively documented. However, the role of atmospheric convectively coupled Kelvin waves (CCKWs), which are uncorrelated to those previously identified processes, in triggering Atlantic Niños has been unclear. Here we identify CCKWs using Wheeler‐Kiladis filtering based on 10°S–10°N averaged daily outgoing longwave radiation. CCKWs propagate eastward from South America and induce surface zonal wind anomalies over the equatorial Atlantic Ocean. Strong anomalous CCKWs during spring (March–May) and their associated surface westerly wind anomalies can trigger downwelling oceanic Kelvin waves that change the east–west slope of the thermocline, consequently leading to Atlantic Niño. A causal effect network reveals that interannual sea surface temperature (SST) anomalies in the Atlantic Niño Index area and CCKWs, both in spring, are uncorrelated, but both appear to influence SST anomalies over the Atlantic Niño Index area in summer. The CCKWs are also uncorrelated to other coupled ocean‐atmosphere sources, such as El Niño–Southern Oscillation and Atlantic Meridional Mode. Among a total of 15 Atlantic Niño/Niña events identified for the period of 1980–2017, two‐thirds of the events are linked to CCKWs. In particular, three Atlantic Niña events (1982, 1994, and 2005) are mainly triggered by CCKWs, under unfavorable SST preconditions. Thus, CCKWs in spring, due to atmospheric internal variability, provide another mechanism for triggering Atlantic Niños and probably weaken their predictability.more » « less
-
Abstract South America, especially the Amazon region, is considered a hotspot of biosphere–atmosphere interactions and presents a unique challenge for regional climate modeling. Here, we evaluate the performance of a regional model in simulating the climate–vegetation system in South America and use the model to investigate the potential role of large‐scale warming in the recently observed trend of hydroclimate and vegetation. Compared with prescribing vegetation based on observational data, adding the predictive vegetation capacity to the regional climate model enabled the model to simulate the vegetation response to climate while sustaining the model performance in reproducing the mean, variability and extremes of the regional climate. The coupled vegetation–climate model captures the recent trends in hydroclimate and vegetation productivity and their spatial contrasts, including a trend toward warmer, drier, and less productive conditions in the Amazon and Nordeste regions and a trend toward cooler, wetter, and more productive condition in the La Plata region. Results from sensitivity experiment driven by detrended boundary forcing for the regional climate suggest that much of the trends in the Amazon and Nordeste regions can be attributed to the effects of large‐scale warming, but contribution from decadal variability also plays a role especially for the most recent decade. However, the trend in the La Plata region cannot be attenuated by the removal of the boundary forcing trend, indicating the role of large‐scale circulation pattern changes. The recent trends in vegetation productivity may be early manifestation of future changes in the Amazon and surrounding regions.more » « less
-
Abstract A constellation of satellites is now in orbit providing information about terrestrial carbon and water storage and fluxes. These combined observations show that the tropical biosphere has changed significantly in the last 2 decades from the combined effects of climate variability and land use. Large areas of forest have been cleared in both wet and dry forests, increasing the source of carbon to the atmosphere. Concomitantly, tropical fire emissions have declined, at least until 2016, from changes in land‐use practices and rainfall, increasing the net carbon sink. Measurements of carbon stocks and fluxes from disturbance and recovery and of vegetation photosynthesis show significant regional variability of net biosphere exchange and gross primary productivity across the tropics and are tied to seasonal and interannual changes in water fluxes and storage. Comparison of satellite based estimates of evapotranspiration, photosynthesis, and the deuterium content of water vapor with patterns of total water storage and rainfall demonstrate the presence of vegetation‐atmosphere interactions and feedback mechanisms across tropical forests. However, these observations of stocks, fluxes and inferred interactions between them do not point unambiguously to either positive or negative feedbacks in carbon and water exchanges. These ambiguities highlight the need for assimilation of these new measurements with Earth System models for a consistent assessment of process interactions, along with focused field campaigns that integrate ground, aircraft and satellite measurements, to quantify the controlling carbon and water processes and their feedback mechanisms.more » « less
-
Abstract. The Congo Basin in Central Africa is one of three convective centers in the tropics, characterized by a high proportion of precipitation produced by mesoscale convective systems (MCSs). However, process-level understanding of these systems and their relationship to environmental factors over the Congo Basin remains unclear, largely due to scarce in-situ observations. This study employs the Model for Prediction Across Scales–Atmosphere (MPAS-A), a global cloud-resolving model, to investigate MCSs in this region. Compared to satellite-observed brightness temperature (Tb), MPAS-A realistically simulates key MCS features, allowing a detailed comparison between two mesoscale convective complex (MCC) cases: one over the southern mountainous region (MCC-south) and the other over the northern lowland forests (MCC-north). MCC-south is larger, longer-lived, and moves a longer distance than MCC-north. Our analysis shows that MCC-south is supported by higher thermodynamic energy and more favorable vertical wind shear ahead of the system. The shear extends up to 400 km, explains up to 65 % of the Tb variance, and is well balanced by a moderately strong cold pool. In contrast, MCC-north features weaker, localized shear near the center and a stronger cold pool. The African Easterly Jet helps maintain the shear in both cases, but an overly strong jet may suppress low-level westerlies and weaken convection. These results show how latitude and topography modulate environmental influences on Congo Basin MCS developments. The findings underscore the value of global cloud-resolving models in data-sparse regions for understanding convective systems and their impacts on weather extremes and societal risks.more » « lessFree, publicly-accessible full text available August 25, 2026
An official website of the United States government
