Active metamaterials address fundamental limitations of passive media and have widely been recognized as necessary in numerous compelling applications such as cloaking and extreme noise absorption. However, most practical devices of interest have yet to be realized due to the lack of a suitable strategy for implementing bulk active metamaterials—those that involve interacting cells and functionality beyond one dimension. Here, we present such an active acoustic metamaterial design with bulk modulus and anisotropic mass density that can be independently programmed over wide value ranges. We demonstrate this ability experimentally in several examples, targeting acoustic properties that are hard to access otherwise, such as a bulk modulus significantly smaller than air, strong mass density anisotropy, and complex bulk modulus and mass density for high reflectionless sound absorption. This work enables the transition of active acoustic metamaterials from isolated proof-of-concept demonstrations to versatile bulk materials.
Active acoustic metamaterials incorporate electric circuit elements that input energy into an otherwise passive medium to aptly modulate the effective material properties. Here, we propose an active acoustic metamaterial with Willis coupling to drastically extend the tunability of the effective density and bulk modulus with the accessible parameter range enlarged by at least two orders of magnitude compared to that of a non-Willis metamaterial. Traditional active metamaterial designs are based on local resonances without considering the Willis coupling that limit their accessible effective material parameter range. Our design adopts a unit cell structure with two sensor-transducer pairs coupling the acoustic response on both sides of the metamaterial by detecting incident waves and driving active signals asymmetrically superimposed onto the passive response of the material. The Willis coupling results from feedback control circuits with unequal gains. These asymmetric feedback control circuits use Willis coupling to expand the accessible range of the effective density and bulk modulus of the metamaterial. The extreme effective material parameters realizable by the metamaterials will remarkably broaden their applications in biomedical imaging, noise control, and transformation acoustics-based cloaking.
more » « less- Award ID(s):
- 2037565
- PAR ID:
- 10363954
- Publisher / Repository:
- Acoustical Society of America (ASA)
- Date Published:
- Journal Name:
- The Journal of the Acoustical Society of America
- Volume:
- 151
- Issue:
- 3
- ISSN:
- 0001-4966
- Page Range / eLocation ID:
- p. 1722-1729
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Active acoustic metamaterials are one path to acoustic properties difficult to realize with passive structures, especially for broadband applications. Here, we experimentally demonstrate a 2D metamaterial composed of coupled sensor-driver unit cells with effective bulk modulus ([Formula: see text]) precisely tunable through adjustments of the amplitude and phase of the transfer function between pairs of sensors and drivers present in each cell. This work adopts the concepts of our previous theoretical study on polarized sources to realize acoustic metamaterials in which the active unit cells are strongly interacting with each other. To demonstrate the capability of our active metamaterial to produce on-demand negative, fractional, and large [Formula: see text], we matched the scattered field from an incident pulse measured in a 2D waveguide with the sound scattered by equivalent continuous materials obtained in numerical simulations. Our approach benefits from being highly scalable, as the unit cells are independently controlled and any number of them can be arranged to form arbitrary geometries without added computational complexity.more » « less
-
Abstract Stimuli-responsive elastic metamaterials augment unique subwavelength features and wave manipulation capabilities with a degree of tunability, which enables them to cut across different time scales and frequency regimes. Here, we present an experimental framework for robust local resonance bandgap control enabled by enhanced magneto-mechanical coupling properties of a magnetorheological elastomer, serving as the resonating stiffness of a metamaterial cell. During the curing process, ferromagnetic particles in the elastomeric matrix are aligned under the effect of an external magnetic field. As a result, particle chains with preferred orientation form along the field direction. The resulting anisotropic behavior significantly boosts the sensitivity of the metamaterial’s elastic modulus to the imposed field during operation, which is then exploited to control the dispersive dynamics and experimentally shift the location and width of the resonance-based bandgap along the frequency axis. Finally, numerical simulations are used to project the performance of the magnetically-tunable metamaterial at stronger magnetic fields and increased levels of material anisotropy, as a blueprint for broader implementations of in situ tunable active metamaterials.
-
Identifying the material properties of unknown media is an important scientific/engineering challenge in areas as varied as in-vivo tissue health diagnostics and metamaterial characterization. Currently, techniques exist to retrieve the material parameters of large unknown media from elastic wave scattering in free-space using analytical or numerical methods. However, applying these methods to small samples on the order of few wavelengths in diameter is challenging, as the fields scattered by these samples become significantly contaminated by diffraction from the sample edges. Here, we propose a method to extract the material parameters of small samples using convolutional neural networks trained to learn the mapping between far-field echoes and the material parameters. Networks were trained with synthetic time domain echo data obtained by simulating the free-space scattering of sound from unknown media underwater. Results show that neural networks can accurately predict effective material parameters such as mass density, bulk modulus, and shear modulus even when small training sets are used. Furthermore, we demonstrate in experiments executed in a water tank that the networks trained with synthetic data can accurately estimate the material properties of fabricated metamaterial samples from single-point echo measurements performed in the far-field. This work highlights the effectiveness of our approach to identify unknown media using far-field acoustic reflection dominated by diffraction fields and will open a new avenue toward acoustic sensing techniques.more » « less
-
Abstract Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective actuation strategy is proposed for inhomogeneous deformations of magneto‐mechanical metamaterials, which allows for the integration of multiple elastic wave‐tuning functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. The numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto‐mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhances the programmability of magneto‐mechanical metamaterials, which also expands the application space of magneto‐mechanical metamaterials in elastic wave manipulation.