skip to main content


Title: Shear enhancement of mechanical and microstructural properties of synthetic graphite and ultra‐high molecular weight polyethylene carbon composites
Abstract

Ultra‐high molecular weight polyethylene (UHMWPE) has a variety of industrial and clinical applications due to its superb mechanical properties including ductility, tensile strength, and work‐to‐failure. The versatility of UHMWPE is hindered by the difficulty in processing the polymer into a well consolidated material. This study presents on the effects of shear imparted by equal channel angular pressing (ECAP) on UHMWPE composites containing Nano27 Synthetic Graphite (N27SG). Ductility and work‐to‐failure improvements up to ~60–80% are obtained in sheared N27SG‐UHMWPE composites as compared to non‐sheared N27SG‐UHMWPE controls of the same composition. Microscopy reveals increased fusion at particle boundaries and smaller voids in the sheared materials. Micro‐computed tomography results indicate different distribution of N27SG particulates in ECAP samples as compared to CM indicating enhanced grain boundary interactions. Tradeoffs are not avoided as ECAP samples were lower in conductivity as compared to compression molded (CM) billets of the same weight percent. However, ECAP samples were able to be doped with more N27SG allowing for an ~170% increase in conductivity over CM samples of the same work‐to‐failure. This work shows that ECAP is a viable processing method for obtaining stronger, more ductile conductive composite materials.

 
more » « less
Award ID(s):
1757371
NSF-PAR ID:
10363956
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Applied Polymer Science
Volume:
139
Issue:
20
ISSN:
0021-8995
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ultra‐high molecular weight polyethylene (UHMWPE) is one of the most prominent high‐performance thermoplastics for biomedical, leisure, and coating applications. Large‐scale recycling of UHMWPE is extremely difficult due to the high melt viscosity of the material as well as its exceptional chemical resistance and impact strength. There is a need for a commercially scalable methodology that can process the waste feedstock for mechanical recycling while sustaining the outstanding physical properties of the material. Solid‐state shear pulverization (SSSP) is a continuous, twin‐screw extruder‐based processing technique in which the low‐temperature application of shear and compressive forces impart changes in structure at different length scales to overcome the challenges of difficult‐to‐recycle polymers. This paper investigates the use of SSSP in mechanically recycling post‐industrial scrap UHMWPE (rUHMWPE) material from a local ski and snowboard manufacturer. The SSSP‐processed particles are flat, micron‐scale flakes with enhanced surface area, which can sinter very quickly when compression molded. The molded rUHMWPE samples in turn exhibit enhanced ductility and toughness compared to the as‐received scrap material, based on the tunable mechanochemical modification of the ethylene chains.

     
    more » « less
  2. Carbon fiber reinforced polymer (CFRP) matrix composites have become increasingly popular across industries such as aerospace and automotive industries due to its outstanding mechanical properties and significant weight saving capability. CFRP composites are also widely known to be highly tailorable. For instance, different laminate-level mechanical properties for CFRP composites can be achieved by varying the individual carbon fiber laminar arrangements, among one of them is the Poisson’s ratio. Conventional materials have a positive Poisson’s ratio (PPR), visualize any conventional materials in a 2D block shape, when stretching that material in longitudinal direction, contraction follows on the transverse direction, whereas for materials with a negative Poisson’s ratio (NPR), stretching in the longitudinal direction leads to expansion in the transverse direction. Materials with NPRs have been shown to improve the indentation and impact resistances, when compared to equivalent materials with PPRs. However, producing NPRs could potentially compromise other properties, such as tensile properties, which has not been reported. The current work investigates the effects of NPR on the tensile properties of CFRP composites. Specifically, a laminatelevel NPR of -0.4094 in the in-plane direction is achieved through ply arrangement of CFRP composites using classical lamination theory (CLT). The non-auxetic counterpart CFRP composites are designed to produce an PPR of 0.1598 in the in-plane direction while simultaneously match their elastic moduli in three directions with those of the auxetic composites. Results show that the predicted tensile modulus and in-plane Poisson’s ratio were in excellent agreement with the experiment results. It was found that the ultimate tensile strength and failure strain or ductility of auxetic specimens were on average 40% lower than those of the conventional CFRP composites.

     
    more » « less
  3. null (Ed.)
    Continuous bending under tension (CBT) is known to achieve elongation-to-failure well above that achieved under a conventional uniaxial simple tension (ST) strain path. However, the detailed mechanism for supplying this increased ductility has not been fully understood. It is clear that the necking that occurs in a typical ST specimen is avoided by constantly moving the region of plastic deformation during the CBT process. The volume of material in which the flow stress is greatest is limited to a moving line where the rollers contact the sheet and superimpose bending stress on the applied tensile load. Hence the condition of a large volume of material experiencing stress greater than the material flow stress, leading to strain localization during ST, is avoided. However, the magnitude of the contribution of this phenomenon to the overall increase in elongation is unclear. In the current set of experiments, an elongation to fracture (ETF) of 4.56x and 3.7x higher than ST was achieved by fine-tuning CBT forming parameters for Q&P 1180 and TBF 1180, respectively. A comparison of maximum local strains near the final point of fracture in ST and CBT sheets via digital image correlation revealed that avoidance of localization of plastic strain during CBT accounts for less than half of the increased elongation in the CBT specimens for two steels containing different amounts of retained austenite (RA). Geometrically necessary dislocation evolution is monitored using high-resolution EBSD (HREBSD) for both strain paths, indicating a lower hardening rate in the CBT samples in the bulk of the sheet, potentially relating to the cyclical nature of the stress in the outer layers of the sheet. Interestingly, the GND evolution in the center of the sheet, which does not experience the same amplitude of cyclic stress, follows the ST behavior more closely than the sheet edges. This appears to contribute to a precipitous drop in residual ductility for the specimens that are pulled in ST after partial CBT processing. The rate of transformation of RA is also tracked in the steels, with a significantly lower rate of transformation during CBT, compared to ST. This suggests that a slower transformation rate achieved under CBT also contributed to higher strain-to-failure levels. 
    more » « less
  4. Additive manufacturing (AM) as a disruptive technique has offered great potential to design and fabricate many metallic components for aerospace, medical, nuclear, and energy applications where parts have complex geometry. However, a limited number of materials suitable for the AM process is one of the shortcomings of this technique, in particular laser AM of copper (Cu) is challenging due to its high thermal conductivity and optical reflectivity, which requires higher heat input to melt powders. Fabrication of composites using AM is also very challenging and not easily achievable using the current powder bed technologies. Here, the feasibility to fabricate pure copper and copper-carbon nanotube (Cu-CNT) composites was investigated using laser powder bed fusion additive manufacturing (LPBF-AM), and 10 × 10 × 10 mm3 cubes of Cu and Cu-CNTs were made by applying a Design of Experiment (DoE) varying three parameters: laser power, laser speed, and hatch spacing at three levels. For both Cu and Cu-CNT samples, relative density above 90% and 80% were achieved, respectively. Density measurement was carried out three times for each sample, and the error was found to be less than 0.1%. Roughness measurement was performed on a 5 mm length of the sample to obtain statistically significant results. As-built Cu showed average surface roughness (Ra) below 20 µm; however, the surface of AM Cu-CNT samples showed roughness values as large as 1 mm. Due to its porous structure, the as-built Cu showed thermal conductivity of ~108 W/m·K and electrical conductivity of ~20% IACS (International Annealed Copper Standard) at room temperature, ~70% and ~80% lower than those of conventionally fabricated bulk Cu. Thermal conductivity and electrical conductivity were ~85 W/m·K and ~10% IACS for as-built Cu-CNT composites at room temperature. As-built Cu-CNTs showed higher thermal conductivity as compared to as-built Cu at a temperature range from 373 K to 873 K. Because of their large surface area, light weight, and large energy absorbing behavior, porous Cu and Cu-CNT materials can be used in electrodes, catalysts and their carriers, capacitors, heat exchangers, and heat and impact absorption. 
    more » « less
  5. Abstract

    Nanoparticles embedded within a crystalline solid serve as impurity phonon scattering centers that reduce lattice thermal conductivity, a desirable result for thermoelectric applications. Most studies of thermal transport in nanoparticle-laden composite materials have assumed the nanoparticles to possess a single size. If there is a distribution of nanoparticle sizes, how is thermal conductivity affected? Moreover, is there a best nanoparticle size distribution to minimize thermal conductivity? In this work, we study the thermal conductivity of nanoparticle-laden composites through a molecular dynamics approach which naturally captures phonon scattering processes more rigorously than previously used analytical theories. From thermal transport simulations of a systematic variety of nanoparticle configurations, we empirically formulate how nanoparticle size distribution, particle number density, and volume fraction affect the lattice thermal conductivity. We find at volume fractions below 10%, the particle number density is by far the most impactful factor on thermal conductivity and at fractions above 10%, the effect of the size distribution and number density is minimal compared to the volume fraction. In fact, upon comparisons of configurations with the same particle number density and volume fractions, the lattice thermal conductivity of a single nanoparticle size can be lower than that of a size distribution which contradicts intuitions that a single size would attenuate phonon transport less than a spectrum of sizes. The random alloy, which can be considered as a single size configuration of maximum particle number density where the nanoparticle size is equal to the lattice constant, is the most performant in thermal conductivity reduction at volume fractions below 10%. We conclude that nanoparticle size distribution only plays a minor role in affecting lattice thermal conductivity with the particle number density and volume fraction being the more significant factors that should be considered in fabrication of nanoparticle-laden composites for potential improved thermoelectric performance.

     
    more » « less