An electrically tunable nonlinear optical device working at near‐infrared wavelength is theoretically and experimentally demonstrated. Ultrahigh optical second‐order nonlinearity from titanium‐nitride‐based coupled metallic quantum wells can be electrically tuned by external electric field. Tunability of second‐order susceptibility
Electro‐optic sampling has emerged as a new quantum technique enabling measurements of electric field fluctuations on subcycle time scales. In a second‐order nonlinear material, the fluctuations of a terahertz field are imprinted onto the polarization properties of an ultrashort probe pulse in the near infrared. The statistics of this time‐domain signal are calculated, incorporating the quantum nature of the involved electric fields right from the beginning. A microscopic quantum theory of the electro‐optic process is developed adopting an ensemble of noninteracting three‐level systems as a model for the nonlinear material. It is found that the response of the nonlinear medium can be separated into a conventional part, which is exploited also in sampling of coherent amplitudes, and quantum contributions, which are independent of the state of the terahertz input. Interactions between the three‐level systems which are mediated by terahertz vacuum fluctuations are causing this quantum response. Conditions under which the classical response serves as a good approximation of the electro‐optic process are also determined and how the statistics of the sampled terahertz field can be reconstructed from the electro‐optic signal is demonstrated. In a complementary regime, electro‐optic sampling can serve as a spectroscopic tool to study the pure quantum susceptibilities of matter.
more » « less- Award ID(s):
- 1953045
- NSF-PAR ID:
- 10364003
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Laser & Photonics Reviews
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1863-8880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract χ (2)reaches a 63% modulation depth with an average tunability of 10.5% per volt. In addition, electro‐optic modulation of second‐harmonic signal is presented by continuous tuning ofχ (2)over a long period of time with high stability. These results provide a new material platform with actively controllable strong nonlinearity for future nonlinear photonic systems, such as ultra‐compact opto‐electronic modulation devices and reconfigurable nonlinear metamaterials and metasurfaces. -
Abstract Nonlinear photocurrent in time-reversal invariant noncentrosymmetric systems such as ferroelectric semimetals sparked tremendous interest of utilizing nonlinear optics to characterize condensed matter with exotic phases. Here we provide a microscopic theory of two types of second-order nonlinear direct photocurrents, magnetic shift photocurrent (MSC) and magnetic injection photocurrent (MIC), as the counterparts of normal shift current (NSC) and normal injection current (NIC) in time-reversal symmetry and inversion symmetry broken systems. We show that MSC is mainly governed by shift vector and interband Berry curvature, and MIC is dominated by absorption strength and asymmetry of the group velocity difference at time-reversed ±
k points. Taking -symmetric magnetic topological quantum material bilayer antiferromagnetic (AFM) MnBi2Te4as an example, we predict the presence of large MIC in the terahertz (THz) frequency regime which can be switched between two AFM states with time-reversed spin orderings upon magnetic transition. In addition, external electric field breaks$${\cal{P}}{\cal{T}}$$ symmetry and enables large NSC response in bilayer AFM MnBi2Te4, which can be switched by external electric field. Remarkably, both MIC and NSC are highly tunable under varying electric field due to the field-induced large Rashba and Zeeman splitting, resulting in large nonlinear photocurrent response down to a few THz regime, suggesting bilayer AFM-$${\cal{P}}{\cal{T}}$$ z MnBi2Te4as a tunable platform with rich THz and magneto-optoelectronic applications. Our results reveal that nonlinear photocurrent responses governed by NSC, NIC, MSC, and MIC provide a powerful tool for deciphering magnetic structures and interactions which could be particularly fruitful for probing and understanding magnetic topological quantum materials. -
An electro-optic modulator offers the function of modulating the propagation of light in a material with an electric field and enables a seamless connection between electronics-based computing and photonics-based communication. The search for materials with large electro-optic coefficients and low optical loss is critical to increase the efficiency and minimize the size of electro-optic devices. We present a semi-empirical method to compute the electro-optic coefficients of ferroelectric materials by combining first-principles density-functional theory calculations with Landau–Devonshire phenomenological modeling. We apply the method to study the electro-optic constants, also called Pockels coefficients, of three paradigmatic ferroelectric oxides: BaTiO 3 , LiNbO 3 , and LiTaO 3 . We present their temperature-, frequency-, and strain-dependent electro-optic tensors calculated using our method. The predicted electro-optic constants agree with the experimental results, where available, and provide benchmarks for experimental verification.more » « less
-
Harnessing the unprecedented spatiotemporal resolution capability of light to detect electrophysiological signals has been the goal of scientists for nearly 50 years. Yet, progress toward that goal remains elusive due to lack of electro-optic translators that can efficiently convert electrical activity to high photon count optical signals. Here, we introduce an ultrasensitive and extremely bright nanoscale electric-field probe overcoming the low photon count limitations of existing optical field reporters. Our electro-plasmonic nanoantennas with drastically enhanced cross sections (~10 4 nm 2 compared to typical values of ~10 −2 nm 2 for voltage-sensitive fluorescence dyes and ~1 nm 2 for quantum dots) offer reliable detection of local electric-field dynamics with remarkably high sensitivities and signal–to–shot noise ratios (~60 to 220) from diffraction-limited spots. In our electro-optics experiments, we demonstrate high-temporal resolution electric-field measurements at kilohertz frequencies and achieved label-free optical recording of network-level electrogenic activity of cardiomyocyte cells with low-intensity light (11 mW/mm 2 ).more » « less
-
Electro optic modulators being key for many signal processing systems must adhere to requirements given by both electrical and optical constraints. Distinguishing between charge driven (CD) and field driven (FD) designs, we answer the question of whether fundamental performance benefits can be claimed of modulators based on emerging electro-optic materials. Following primary metrics, we compare the performance of emerging electro-optic and electro-absorption modulators such as graphene, transparent conductive oxides, and Si, based on charge injection with that of the ‘legacy’ FD modulators, such as those based on lithium niobate and quantum confined Stark effect. We show that for rather fundamental reasons and when considering energy and speed only, FD modulators always outperform CD ones in the conventional wavelength scale photonic waveguides. However, for waveguides featuring a sub-wavelength optical mode, such as those assisted by plasmonics, the emerging CD devices are indeed highly competitive especially for applications where component-density on-chip is a factor.