skip to main content


Title: Mass Transfer as an Explanation for the Lifetime Travel Time Discrepancy in IT Librae
Abstract

The eclipsing binary IT Librae is an unusual system of two B-type stars that is situated about 1 kpc above the Galactic plane. The binary was probably ejected from its birthplace in the disk, but the implied time of flight to its current location exceeds the evolutionary lifetime of the primary star. Here we present a study of new high-dispersion spectroscopy and an exquisite light curve from the Kepler K2 mission in order to determine the system properties and resolve the timescale discrepancy. We derive a revised spectroscopic orbit from radial-velocity measurements and determine the component effective temperatures through comparison of reconstructed and model spectra (T1= 23.8 ± 1.8 kK,T2= 13.7 ± 2.5 kK). We use the Eclipsing Light Curve code to model the K2 light curve, and from the inclination of the fit we derive the component masses (M1= 9.6 ± 0.6M,M2= 4.2 ± 0.2M) and mean radii (R1= 6.06 ± 0.16R,R2= 5.38 ± 0.14R). The secondary star is overluminous for its mass and appears to fill its Roche lobe. This indicates that IT Librae is a post-mass-transfer system in which the current secondary was the mass donor star. The current primary star was rejuvenated by mass accretion, and its evolutionary age corresponds to the time since the mass transfer stage. Consequently, the true age of the binary is larger than the ejection time of flight, thus resolving the timescale discrepancy.

 
more » « less
Award ID(s):
1908026
NSF-PAR ID:
10364009
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
163
Issue:
4
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 177
Size(s):
["Article No. 177"]
Sponsoring Org:
National Science Foundation
More Like this
  1. The eclipsing binary IT Librae is an unusual system of two B-type stars that is situated about 1 kpc above the Galactic plane. The binary was probably ejected from its birthplace in the disk, but the implied time of flight to its current location exceeds the evolutionary lifetime of the primary star. Here we present a study of new high-dispersion spectroscopy and an exquisite light curve from the Kepler K2 mission in order to determine the system properties and resolve the timescale discrepancy. We derive a revised spectroscopic orbit from radial-velocity measurements and determine the component effective temperatures through comparison of reconstructed and model spectra (T1 = 23.8 ± 1.8 kK, T2 = 13.7 ± 2.5 kK). We use the Eclipsing Light Curve code to model the K2 light curve, and from the inclination of the fit we derive the component masses (M1 = 9.6 ± 0.6 Me, M2 = 4.2 ± 0.2 Me) and mean radii (R1 = 6.06 ± 0.16 Re, R2 = 5.38 ± 0.14 Re). The secondary star is overluminous for its mass and appears to fill its Roche lobe. This indicates that IT Librae is a post-mass-transfer system in which the current secondary was the mass donor star. The current primary star was rejuvenated by mass accretion, and its evolutionary age corresponds to the time since the mass transfer stage. Consequently, the true age of the binary is larger than the ejection time of flight, thus resolving the timescale discrepancy. 
    more » « less
  2. Context. The origin of the observed population of Wolf-Rayet (WR) stars in low-metallicity galaxies, such as the Small Magellanic Cloud (SMC), is not yet understood. Standard, single-star evolutionary models predict that WR stars should stem from very massive O-type star progenitors, but these are very rare. On the other hand, binary evolutionary models predict that WR stars could originate from primary stars in close binaries. Aims. We conduct an analysis of the massive O star, AzV 14, to spectroscopically determine its fundamental and stellar wind parameters, which are then used to investigate evolutionary paths from the O-type to the WR stage with stellar evolutionary models. Methods. Multi-epoch UV and optical spectra of AzV 14 are analyzed using the non-local thermodynamic equilibrium (LTE) stellar atmosphere code PoWR. An optical TESS light curve was extracted and analyzed using the PHOEBE code. The obtained parameters are put into an evolutionary context, using the MESA code. Results. AzV 14 is a close binary system with a period of P  = 3.7058 ± 0.0013 d. The binary consists of two similar main sequence stars with masses of M 1, 2  ≈ 32  M ⊙ . Both stars have weak stellar winds with mass-loss rates of log Ṁ /( M ⊙ yr −1 ) = −7.7 ± 0.2. Binary evolutionary models can explain the empirically derived stellar and orbital parameters, including the position of the AzV 14 components on the Hertzsprung-Russell diagram, revealing its current age of 3.3 Myr. The model predicts that the primary will evolve into a WR star with T eff  ≈ 100 kK, while the secondary, which will accrete significant amounts of mass during the first mass transfer phase, will become a cooler WR star with T eff  ≈ 50 kK. Furthermore, WR stars that descend from binary components that have accreted significant amount of mass are predicted to have increased oxygen abundances compared to other WR stars. This model prediction is supported by a spectroscopic analysis of a WR star in the SMC. Conclusions. Inspired by the binary evolutionary models, we hypothesize that the populations of WR stars in low-metallicity galaxies may have bimodal temperature distributions. Hotter WR stars might originate from primary stars, while cooler WR stars are the evolutionary descendants of the secondary stars if they accreted a significant amount of mass. These results may have wide-ranging implications for our understanding of massive star feedback and binary evolution channels at low metallicity. 
    more » « less
  3. Abstract

    We present analyses of improved photometric and spectroscopic observations for two detached eclipsing binaries at the turnoff of the open cluster NGC 752: the 1.01 days binary DS And and the 15.53 days BD +37 410. For DS And, we findM1= 1.692 ± 0.004 ± 0.010M,R1= 2.185 ± 0.004 ± 0.008R,M2= 1.184 ± 0.001 ± 0.003M, andR2= 1.200 ± 0.003 ± 0.005R. We either confirm or newly identify unusual characteristics of both stars in the binary: the primary star is found to be slightly hotter than the main-sequence turnoff and there is a more substantial discrepancy in its luminosity compared to models (model luminosities are too large by about 40%), while the secondary star is oversized and cooler compared to other main-sequence stars in the same cluster. The evidence points to nonstandard evolution for both stars, but most plausible paths cannot explain the low luminosity of the primary star. BD +37 410 only has one eclipse per cycle, but extensive spectroscopic observations and the Transiting Exoplanet Survey Satellite light curve constrain the stellar masses well:M1= 1.717 ± 0.011MandM2= 1.175 ± 0.005M. The radius of the main-sequence primary star near 2.9Rdefinitively requires large convective core overshooting (>0.2 pressure scale heights) in models for its mass, and multiple lines of evidence point toward an age of 1.61 ± 0.03 ± 0.05 Gyr (statistical and systematic uncertainties). Because NGC 752 is currently undergoing the transition from nondegenerate to degenerate He ignition of its red clump stars, BD +37 410 A directly constrains the star mass where this transition occurs.

     
    more » « less
  4. Abstract

    We present a study of the orbital light curves of the recurrent nova IM Normae since its 2002 outburst. The broad “eclipses” recur with a 2.46 hr period, which increases on a timescale of 1.28(16) × 106yr. Under the assumption of conservative mass transfer, this suggests a rate near 10−7Myr−1, and this agrees with the estimatedaccretionrate of the postnova, based on our estimate of luminosity. IM Nor appears to be a close match to the famous recurrent nova T Pyxidis. Both stars appear to have very high accretion rates, sufficient to drive the recurrent-nova events. Both have quiescent light curves, which suggest strong heating of the low-mass secondary, and very wide orbital minima, which suggest obscuration of a large “corona” around the primary. And both have very rapid orbital period increases, as expected from a short-period binary with high mass transfer from the low-mass component. These two stars may represent a final stage of nova—and cataclysmic variable—evolution, in which irradiation-driven winds drive a high rate of mass transfer, thereby evaporating the donor star in a paroxysm of nova outbursts.

     
    more » « less
  5. Abstract

    HD 93521 is a massive, rapidly rotating star that is located about 1 kpc above the Galactic disk, and the evolutionary age for its estimated mass is much less than the time of flight if it was ejected from the disk. Here we present a reassessment of both the evolutionary and kinematical timescales for HD 93521. We calculate a time of flight of 39 ± 3 Myr based upon the distance and proper motions from Gaia EDR3 and a summary of radial velocity measurements. We then determine the stellar luminosity using a rotational model combined with the observed spectral energy distribution and distance. A comparison with evolutionary tracks for rotating stars from Brott et al. yields an evolutionary age of about 5 ± 2 Myr. We propose that the solution to the timescale discrepancy is that HD 93521 is a stellar merger product. It was probably ejected from the Galactic disk as a close binary system of lower-mass stars that eventually merged to create the rapidly rotating and single massive star we observe today.

     
    more » « less