skip to main content


Search for: All records

Award ID contains: 1908026

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The cool hypergiant star RW Cephei is currently in a deep photometric minimum that began several years ago. This event bears a strong similarity to the Great Dimming of the red supergiant Betelgeuse that occurred in 2019–2020. We present the first resolved images of RW Cephei that we obtained with the CHARA Array interferometer. The angular diameter and Gaia distance estimates indicate a stellar radius of 900–1760R, which makes RW Cephei one of the largest stars known in the Milky Way. The reconstructed, near-infrared images show a striking asymmetry in the disk illumination with a bright patch offset from the center and a darker zone to the west. The imaging results depend on assumptions made about the extended flux, and we present two cases with and without allowing extended emission. We also present a recent near-infrared spectrum of RW Cep that demonstrates that the fading is much larger at visual wavelengths compared to that at near-infrared wavelengths as expected for extinction by dust. We suggest that the star’s dimming is the result of a recent surface mass ejection event that created a dust cloud that now partially blocks the stellar photosphere.

     
    more » « less
  2. Abstract

    Close binary interactions may play a critical role in the formation of the rapidly rotating Be stars. Mass transfer can result in a mass gainer star spun up by the accretion of mass and angular momentum, while the mass donor is stripped of its envelope to form a hot and faint helium star. Far-UV spectroscopy has led to the detection of about 20 such binary Be+sdO systems. Here we report on a 3 yr program of high-quality spectroscopy designed to determine the orbital periods and physical properties of five Be binary systems. These binaries are long orbital period systems withP= 95–237 days and small semiamplitudeK1< 11 km s−1. We combined the Be star velocities with prior sdO measurements to obtain mass ratios. A Doppler tomography algorithm shows the presence of the Heiiλ4686 line in the faint spectrum of the hot companion in four of the targets. We discuss the observed line variability and show evidence of phase-locked variations in the emission profiles of HD 157832, suggesting a possible disk spiral density wave due to the presence of the companion star. The stripped companions in HD 113120 and HD 137387 may have a mass larger than 1.4M, indicating that they could be progenitors of Type Ib and Ic supernovae.

     
    more » « less
  3. Abstract

    The origin of the bright and hard X-ray emission flux among theγCas subgroup of B-emission line (Be) stars may be caused by gas accretion onto an orbiting white dwarf (WD) companion. Such Be+WD binaries are the predicted outcome of a second stage of mass transfer from a helium star mass donor to a rapidly rotating mass gainer star. The stripped donor stars become small and hot white dwarfs that are extremely faint compared to their Be star companions. Here we discuss model predictions about the physical and orbital properties of Be+WD binaries, and we show that current observational results onγCas systems are consistent with the expected large binary frequency, companion faintness and small mass, and relatively high mass range of the Be star hosts. We determine that the companions are probably not stripped helium stars (hot subdwarf sdO stars), because these are bright enough to detect in ultraviolet spectroscopy, yet their spectroscopic signatures are not observed in studies ofγCas binaries. Interferometry of relatively nearby systems provides the means to detect very faint companions including hot subdwarf and cooler main-sequence stars. Preliminary observations of fiveγCas binaries with the CHARA Array interferometer show no evidence of the companion flux, leaving white dwarfs as the only viable candidates for the companions.

     
    more » « less
  4. Abstract

    Because many classical Be stars may owe their nature to mass and angular-momentum transfer in a close binary, the present masses, temperatures, and radii of their components are of high interest for comparison to stellar evolution models. ObjectκDra is a 61.5 day single-lined binary with a B6 IIIe primary. With the CHARA Array instruments MIRC/MIRC-X and MYSTIC, we detected the secondary at (approximately photospheric) flux ratios of 1.49% ± 0.10% and 1.63% ± 0.09% in theHandKband, respectively. From a large and diverse optical spectroscopic database, only the radial velocity curve of the Be star could be extracted. However, employing the parallaxes from Hipparcos and Gaia, which agree within their nominal 1σerrors, we could derive the total mass and found component masses of 3.65 ± 0.48 and 0.426 ± 0.043Mfor the Be star and the companion, respectively. Previous cross-correlation of the observed FUV spectrum with O-type subdwarf (sdO) spectral model templates had not detected a companion belonging to the hot sdO population known from ∼20 earlier-type Be stars. Guided by our full 3D orbital solution, we found a strong cross-correlation signal for a stripped subdwarf B-type companion (FUV flux ratio of 2.3% ± 0.5%), enabling the first firm characterization of such a star and makingκDra the first mid- to late-type Be star with a directly observed subdwarf companion.

     
    more » « less
  5. Abstract

    HD 93521 is a massive, rapidly rotating star that is located about 1 kpc above the Galactic disk, and the evolutionary age for its estimated mass is much less than the time of flight if it was ejected from the disk. Here we present a reassessment of both the evolutionary and kinematical timescales for HD 93521. We calculate a time of flight of 39 ± 3 Myr based upon the distance and proper motions from Gaia EDR3 and a summary of radial velocity measurements. We then determine the stellar luminosity using a rotational model combined with the observed spectral energy distribution and distance. A comparison with evolutionary tracks for rotating stars from Brott et al. yields an evolutionary age of about 5 ± 2 Myr. We propose that the solution to the timescale discrepancy is that HD 93521 is a stellar merger product. It was probably ejected from the Galactic disk as a close binary system of lower-mass stars that eventually merged to create the rapidly rotating and single massive star we observe today.

     
    more » « less
  6. Abstract

    The eclipsing binary IT Librae is an unusual system of two B-type stars that is situated about 1 kpc above the Galactic plane. The binary was probably ejected from its birthplace in the disk, but the implied time of flight to its current location exceeds the evolutionary lifetime of the primary star. Here we present a study of new high-dispersion spectroscopy and an exquisite light curve from the Kepler K2 mission in order to determine the system properties and resolve the timescale discrepancy. We derive a revised spectroscopic orbit from radial-velocity measurements and determine the component effective temperatures through comparison of reconstructed and model spectra (T1= 23.8 ± 1.8 kK,T2= 13.7 ± 2.5 kK). We use the Eclipsing Light Curve code to model the K2 light curve, and from the inclination of the fit we derive the component masses (M1= 9.6 ± 0.6M,M2= 4.2 ± 0.2M) and mean radii (R1= 6.06 ± 0.16R,R2= 5.38 ± 0.14R). The secondary star is overluminous for its mass and appears to fill its Roche lobe. This indicates that IT Librae is a post-mass-transfer system in which the current secondary was the mass donor star. The current primary star was rejuvenated by mass accretion, and its evolutionary age corresponds to the time since the mass transfer stage. Consequently, the true age of the binary is larger than the ejection time of flight, thus resolving the timescale discrepancy.

     
    more » « less
  7. Abstract

    We present a spectroscopic analysis of the most rapidly rotating stars currently known, VFTS 102 (vesini=649±52km s−1; O9: Vnnne+) and VFTS 285 (vesini=610±41km s−1; O7.5: Vnnn), both members of the 30 Dor complex in the Large Magellanic Cloud. This study is based on high-resolution ultraviolet spectra from Hubble Space Telescope/Cosmic Origins Spectrograph and optical spectra from the Very Large Telescope (VLT) X-shooter plus archival VLT GIRAFFE spectra. We utilize numerical simulations of their photospheres, rotationally distorted shape, and gravity darkening to calculate model spectral line profiles and predicted monochromatic absolute fluxes. We use a guided grid search to investigate parameters that yield best fits for the observed features and fluxes. These fits produce estimates of the physical parameters for these stars (plus a Galactic counterpart,ζOph) including the equatorial rotational velocity, inclination, radius, mass, gravity, temperature, and reddening. We find that both stars appear to be radial-velocity constant. VFTS 102 is rotating at critical velocity, has a modest He enrichment, and appears to share the motion of the nearby OB-association LH 99. These properties suggest that the star was spun up through a close binary merger. VFTS 285 is rotating at 95% of critical velocity, has a strong He enrichment, and is moving away from the R136 cluster at the center of 30 Dor. It is mostly likely a runaway star ejected by a supernova explosion that released the components of the natal binary system.

     
    more » « less
  8. Abstract

    Classical Be stars are possible products of close binary evolution, in which the mass donor becomes a hot, stripped O- or B-type subdwarf (sdO/sdB), and the mass gainer spins up and grows a disk to become a Be star. While several Be+sdO binaries have been identified, dynamical masses and other fundamental parameters are available only for a single Be+sdO system, limiting the confrontation with binary evolution models. In this work, we present direct interferometric detections of the sdO companions of three Be stars—28 Cyg, V2119 Cyg, and 60 Cyg—all of which were previously found in UV spectra. For two of the three Be+sdO systems, we present first orbits and preliminary dynamical masses of the components, revealing that one of them could be the first identified progenitor of a Be/X-ray binary with a neutron star companion. These results provide new sets of fundamental parameters that are crucially needed to establish the evolutionary status and origin of Be stars.

     
    more » « less
  9. The eclipsing binary IT Librae is an unusual system of two B-type stars that is situated about 1 kpc above the Galactic plane. The binary was probably ejected from its birthplace in the disk, but the implied time of flight to its current location exceeds the evolutionary lifetime of the primary star. Here we present a study of new high-dispersion spectroscopy and an exquisite light curve from the Kepler K2 mission in order to determine the system properties and resolve the timescale discrepancy. We derive a revised spectroscopic orbit from radial-velocity measurements and determine the component effective temperatures through comparison of reconstructed and model spectra (T1 = 23.8 ± 1.8 kK, T2 = 13.7 ± 2.5 kK). We use the Eclipsing Light Curve code to model the K2 light curve, and from the inclination of the fit we derive the component masses (M1 = 9.6 ± 0.6 Me, M2 = 4.2 ± 0.2 Me) and mean radii (R1 = 6.06 ± 0.16 Re, R2 = 5.38 ± 0.14 Re). The secondary star is overluminous for its mass and appears to fill its Roche lobe. This indicates that IT Librae is a post-mass-transfer system in which the current secondary was the mass donor star. The current primary star was rejuvenated by mass accretion, and its evolutionary age corresponds to the time since the mass transfer stage. Consequently, the true age of the binary is larger than the ejection time of flight, thus resolving the timescale discrepancy. 
    more » « less
  10. Abstract We present the visual orbits of four spectroscopic binary stars, HD 61859, HD 89822, HD 109510, and HD 191692, using long baseline interferometry with the CHARA Array. We also obtained new radial velocities from echelle spectra using the APO 3.5 m, CTIO 1.5 m, and Fairborn Observatory 2.0 m telescopes. By combining the astrometric and spectroscopic observations, we solve for the full, three-dimensional orbits and determine the stellar masses to 1%–12% uncertainty and distances to 0.4%–6% uncertainty. We then estimate the effective temperature and radius of each component star through Doppler tomography and spectral energy distribution analyses. We found masses of 1.4–3.5 M ⊙ , radii of 1.5–4.7 R ⊙ , and temperatures of 6400–10,300 K. We then compare the observed stellar parameters to the predictions of the stellar evolution models, but found that only one of our systems fits well with the evolutionary models. 
    more » « less