skip to main content


Title: Correlations between metabolites in the synovial fluid and serum: A mouse injury study
Abstract

Osteoarthritis occurs frequently after joint injury. Currently, osteoarthritis is diagnosed by radiographic changes that are typically found after the disease has progressed to multiple tissues. The primary objective was to compare potential metabolomic biomarkers of joint injury between synovial fluid and serum in a mouse model of posttraumatic osteoarthritis. The secondary objective was to gain insight into the pathophysiology of osteoarthritis by examining metabolomic profiles after joint injury. Twelve‐week‐old adult female C57BL/6 mice (n = 12) were randomly assigned to control, Day 1, or Day 8 postinjury groups. Randomly selected stifle joints were subjected to a single rapid compression. At Days 1 and 8 postinjury, serum was extracted before mice were euthanized for synovial fluid collection. Metabolomic profiling detected ~2500 metabolites across serum and synovial fluid. Of these, 179 were positively correlated and 51 were negatively correlated between synovial fluid and serum, indicating the potential for the development of metabolomic biomarkers. Synovial fluid captured injury‐induced differences in metabolomic profiles at both Days 1 and 8 after injury whereas serum did not. However, synovial fluid and serum were distinct at both time points after injury. In synovial fluid, pathways of interest mapped to amino acid synthesis and degradation, bupropion degradation, and transfer RNA (tRNA) charging. In serum, pathways were amino acid synthesis and degradation, the phospholipase pathway, and nicotine degradation. These results provide a rich picture of the injury response at early time points after joint injury. Furthermore, the correlations between synovial fluid and serum metabolites suggest the potential to gain insight into intra‐articular pathophysiology through analysis of serum metabolites.

 
more » « less
NSF-PAR ID:
10364011
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Orthopaedic Research
Volume:
40
Issue:
12
ISSN:
0736-0266
Page Range / eLocation ID:
p. 2792-2802
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lubricin is an important boundary lubricant and chondroprotective glycoprotein in synovial fluid. Both increased and decreased synovial fluid lubricin concentrations have been reported in experimental post-traumatic osteoarthritis (PTOA) animal models and in naturally occurring joint injuries in humans and animals, with no consensus about how lubricin is altered in different species or injury types. Increased synovial fluid lubricin has been observed following intra-articular fracture in humans and horses and in human late-stage osteoarthritis; however, it is unknown how synovial lubricin is affected by knee-destabilizing injuries in large animals. Spontaneous rupture of cranial cruciate ligament (RCCL), the anterior cruciate ligament equivalent in quadrupeds, is a common injury in dogs often accompanied by OA. Here, clinical records, radiographs, and synovial fluid samples from 30 dogs that sustained RCCL and 9 clinically healthy dogs were analyzed. Synovial fluid lubricin concentrations were nearly 16-fold greater in RCCL joints as compared to control joints, while IL-2, IL-6, IL-8, and TNF-α concentrations did not differ between groups. Synovial fluid lubricin concentrations were correlated with the presence of radiographic OA and were elevated in three animals sustaining RCCL injury prior to the radiographic manifestation of OA, indicating that lubricin may be a potential biomarker for early joint injury.

     
    more » « less
  2. The acute radiation syndrome is defined in large part by radiation injury in the hematopoietic and gastrointestinal (GI) systems. To identify new pathways involved in radiation-induced GI injury, this study assessed dose- and time-dependent changes in plasma metabolites in a nonhuman primate model of whole abdominal irradiation. Male and female adult Rhesus monkeys were exposed to 6 MV photons to the abdomen at doses ranging between 8 and 14 Gy. At time points from 1 to 60 days after irradiation, plasma samples were collected and subjected to untargeted metabolomics. With the limited sample size of females, different discovery times after irradiation between males and females were observed in metabolomics pattern. Detailed analyses are restricted to only males for the discovery power. Radiation caused an increase in fatty acid oxidation and circulating levels of corticosteroids which may be an indication of physiological stress, and amino acids, indicative of a cellular repair response. The largest changes were observed at days 9 and 10 post-irradiation, with most returning to baseline at day 30. In addition, dysregulated metabolites involved in amino acid pathways, which might indicate changes in the microbiome, were detected. In conclusion, abdominal irradiation in a nonhuman primate model caused a plasma metabolome profile indicative of GI injury. These results point to pathways that may be targeted for intervention or used as early indicators of GI radiation injury. Moreover, our results suggest that effects are sex-specific and that interventions may need to be tailored accordingly. 
    more » « less
  3. null (Ed.)
    Background A better understanding of the pathophysiology involving coronary artery calcification (CAC) in patients on hemodialysis (HD) will help to develop new therapies. We sought to identify the differences in metabolomics profiles between patients on HD with and without CAC. Methods In this case-control study, nested within a cohort of 568 incident patients on HD, the cases were patients without diabetes with a CAC score >100 ( n =51), and controls were patients without diabetes with a CAC score of zero ( n =48). We measured 452 serum metabolites in each participant. Metabolites and pathway scores were compared using Mann–Whitney U tests, partial least squares–discriminant analyses, and pathway enrichment analyses. Results Compared with controls, cases were older (64±13 versus 42±12 years) and were less likely to be Black (51% versus 94%). We identified three metabolites in bile-acid synthesis (chenodeoxycholic, deoxycholic, and glycolithocholic acids) and one pathway (arginine/proline metabolism). After adjusting for demographics, higher levels of chenodeoxycholic, deoxycholic, and glycolithocholic acids were associated with higher odds of having CAC; comparing the third with the first tertile of each bile acid, the OR was 6.34 (95% CI, 1.12 to 36.06), 6.73 (95% CI, 1.20 to 37.82), and 8.53 (95% CI, 1.50 to 48.49), respectively. These associations were no longer significant after further adjustment for coronary artery disease and medication use. Per 1 unit higher in the first principal component score, arginine/proline metabolism was associated with CAC after adjusting for demographics (OR, 1.83; 95% CI, 1.06 to 3.15), and the association remained significant with additional adjustments for statin use (OR, 1.84; 95% CI, 1.04 to 3.27). Conclusions Among patients on HD without diabetes mellitus, chenodeoxycholic, deoxycholic, and glycolithocholic acids may be potential biomarkers for CAC, and arginine/proline metabolism is a plausible mechanism to study for CAC. These findings need to be confirmed in future studies. 
    more » « less
  4. Objective

    Transforming growth factor β (TGFβ) signaling plays a complex tissue‐specific and nonlinear role in osteoarthritis (OA). This study was conducted to determine the osteocytic contributions of TGFβ signaling to OA.

    Methods

    To identify the role of osteocytic TGFβ signaling in joint homeostasis, we used 16‐week‐old male mice (n = 9–11 per group) and female mice (n = 7–11 per group) with an osteocyte‐intrinsic ablation of TGFβ receptor type II (TβRIIocy−/−mice) and assessed defects in cartilage degeneration, subchondral bone plate (SBP) thickness, and SBP sclerostin expression. To further investigate these mechanisms in 16‐week‐old male mice, we perturbed joint homeostasis by subjecting 8‐week‐old mice to medial meniscal/ligamentous injury (MLI), which preferentially disrupts the mechanical environment of the medial joint to induce OA.

    Results

    In all contexts, independent of sex, genotype, or medial or lateral joint compartment, increased SBP thickness and SBP sclerostin expression were spatially associated with cartilage degeneration. Male TβRIIocy−/−mice, but not female TβRIIocy−/−mice, had increased cartilage degeneration, increased SBP thickness, and higher levels of SBP sclerostin compared with control mice (allP< 0.05), demonstrating that the role of osteocytic TGFβ signaling on joint homeostasis is sexually dimorphic. With changes in joint mechanics following injury, control mice had increased SBP thickness, subchondral bone volume, and SBP sclerostin expression (allP< 0.05). TβRIIocy−/−mice, however, were insensitive to subchondral bone changes with injury, suggesting that mechanosensation at the SBP requires osteocytic TGFβ signaling.

    Conclusion

    Our results provide new evidence that osteocytic TGFβ signaling is required for a mechanosensitive response to injury, and that osteocytes control SBP homeostasis to maintain cartilage health, identifying osteocytic TGFβ signaling as a novel therapeutic target for OA.

     
    more » « less
  5. Abstract Osteoarthritis (OA) of the knee joint is a degenerative disease initiated by mechanical stress that affects millions of individuals. The disease manifests as joint damage and synovial inflammation. Post-traumatic osteoarthritis (PTOA) is a specific form of OA caused by mechanical trauma to the joint. The progression of PTOA is prevented by immediate post-injury therapeutic intervention. Intra-articular injection of anti-inflammatory therapeutics (e.g. corticosteroids) is a common treatment option for OA before end-stage surgical intervention. However, the efficacy of intra-articular injection is limited due to poor drug retention time in the joint space and the variable efficacy of corticosteroids. Here, we endeavored to characterize a four-arm maleimide-functionalized polyethylene glycol (PEG-4MAL) hydrogel system as a ‘mechanical pillow’ to cushion the load-bearing joint, withstand repetitive loading and improve the efficacy of intra-articular injections of nanoparticles containing dexamethasone, an anti-inflammatory agent. PEG-4MAL hydrogels maintained their mechanical properties after physiologically relevant cyclic compression and released therapeutic payload in an on-demand manner under in vitro inflammatory conditions. Importantly, the on-demand hydrogels did not release nanoparticles under repetitive mechanical loading as experienced by daily walking. Although dexamethasone had minimal protective effects on OA-like pathology in our studies, the PEG-4MAL hydrogel functioned as a mechanical pillow to protect the knee joint from cartilage degradation and inhibit osteophyte formation in an in vivo load-induced OA mouse model. 
    more » « less