skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanosensitive Control of Articular Cartilage and Subchondral Bone Homeostasis in Mice Requires Osteocytic Transforming Growth Factor β Signaling
ObjectiveTransforming growth factor β (TGFβ) signaling plays a complex tissue‐specific and nonlinear role in osteoarthritis (OA). This study was conducted to determine the osteocytic contributions of TGFβ signaling to OA. MethodsTo identify the role of osteocytic TGFβ signaling in joint homeostasis, we used 16‐week‐old male mice (n = 9–11 per group) and female mice (n = 7–11 per group) with an osteocyte‐intrinsic ablation of TGFβ receptor type II (TβRIIocy−/−mice) and assessed defects in cartilage degeneration, subchondral bone plate (SBP) thickness, and SBP sclerostin expression. To further investigate these mechanisms in 16‐week‐old male mice, we perturbed joint homeostasis by subjecting 8‐week‐old mice to medial meniscal/ligamentous injury (MLI), which preferentially disrupts the mechanical environment of the medial joint to induce OA. ResultsIn all contexts, independent of sex, genotype, or medial or lateral joint compartment, increased SBP thickness and SBP sclerostin expression were spatially associated with cartilage degeneration. Male TβRIIocy−/−mice, but not female TβRIIocy−/−mice, had increased cartilage degeneration, increased SBP thickness, and higher levels of SBP sclerostin compared with control mice (allP< 0.05), demonstrating that the role of osteocytic TGFβ signaling on joint homeostasis is sexually dimorphic. With changes in joint mechanics following injury, control mice had increased SBP thickness, subchondral bone volume, and SBP sclerostin expression (allP< 0.05). TβRIIocy−/−mice, however, were insensitive to subchondral bone changes with injury, suggesting that mechanosensation at the SBP requires osteocytic TGFβ signaling. ConclusionOur results provide new evidence that osteocytic TGFβ signaling is required for a mechanosensitive response to injury, and that osteocytes control SBP homeostasis to maintain cartilage health, identifying osteocytic TGFβ signaling as a novel therapeutic target for OA.  more » « less
Award ID(s):
1636331
PAR ID:
10453299
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Arthritis & Rheumatology
Volume:
73
Issue:
3
ISSN:
2326-5191
Format(s):
Medium: X Size: p. 414-425
Size(s):
p. 414-425
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Osteoarthritis (OA), long considered a primary disorder of articular cartilage, is commonly associated with subchondral bone sclerosis. However, the cellular mechanisms responsible for changes to subchondral bone in OA, and the extent to which these changes are drivers of or a secondary reaction to cartilage degeneration, remain unclear. In knee joints from human patients with end-stage OA, we found evidence of profound defects in osteocyte function. Suppression of osteocyte perilacunar/canalicular remodeling (PLR) was most severe in the medial compartment of OA subchondral bone, with lower protease expression, diminished canalicular networks, and disorganized and hypermineralized extracellular matrix. As a step toward evaluating the causality of PLR suppression in OA, we ablated the PLR enzyme MMP13 in osteocytes while leaving chondrocytic MMP13 intact, using Cre recombinase driven by the 9.6-kb DMP1 promoter. Not only did osteocytic MMP13 deficiency suppress PLR in cortical and subchondral bone, but it also compromised cartilage. Even in the absence of injury, osteocytic MMP13 deficiency was sufficient to reduce cartilage proteoglycan content, change chondrocyte production of collagen II, aggrecan, and MMP13, and increase the incidence of cartilage lesions, consistent with early OA. Thus, in humans and mice, defects in PLR coincide with cartilage defects. Osteocyte-derived MMP13 emerges as a critical regulator of cartilage homeostasis, likely via its effects on PLR. Together, these findings implicate osteocytes in bone-cartilage crosstalk in the joint and suggest a causal role for suppressed perilacunar/canalicular remodeling in osteoarthritis. 
    more » « less
  2. ObjectiveTo elucidate the role of decorin, a small leucine‐rich proteoglycan, in the degradation of cartilage matrix during the progression of post‐traumatic osteoarthritis (OA). MethodsThree‐month–old decorin‐null (Dcn−/−) and inducible decorin‐knockout (DcniKO) mice were subjected to surgical destabilization of the medial meniscus (DMM) to induce post‐traumaticOA. TheOAphenotype that resulted was evaluated by assessing joint morphology and sulfated glycosaminoglycan (sGAG) staining via histological analysis (n = 6 mice per group), surface collagen fibril nanostructure via scanning electron microscopy (n = 4 mice per group), tissue modulus via atomic force microscopy–nanoindentation (n = 5 or more mice per group) and subchondral bone structure via micro–computed tomography (n = 5 mice per group). Femoral head cartilage explants from wild‐type and Dcn−/−mice were stimulated with the inflammatory cytokine interleukin‐1β (IL‐1β) in vitro (n = 6 mice per group). The resulting chondrocyte response toIL‐1β and release ofsGAGs were quantified. ResultsIn both Dcn−/−and DcniKOmice, the absence of decorin resulted in acceleratedsGAGloss and formation of highly aligned collagen fibrils on the cartilage surface relative to the control (P< 0.05). Also, Dcn−/−mice developed more salient osteophytes, illustrating more severeOA. In cartilage explants treated withIL‐1β, loss of decorin did not alter the expression of either anabolic or catabolic genes. However, a greater proportion ofsGAGs was released to the media from Dcn−/−mouse explants, in both live and devitalized conditions (P< 0.05). ConclusionIn post‐traumaticOA, decorin delays the loss of fragmented aggrecan and fibrillation of cartilage surface, and thus, plays a protective role in ameliorating cartilage degeneration. 
    more » « less
  3. BackgroundHealthy articular cartilage presents structural gradients defined by distinct zonal patterns through the thickness, which may be disrupted in the pathogenesis of several disorders. Analysis of textural patterns using quantitative MRI data may identify structural gradients of healthy or degenerating tissue that correlate with early osteoarthritis (OA). PurposeTo quantify spatial gradients and patterns in MRI data, and to probe new candidate biomarkers for early severity of OA. Study TypeRetrospective study. SubjectsFourteen volunteers receiving total knee replacement surgery (eight males/two females/four unknown, average age ± standard deviation: 68.1 ± 9.6 years) and 10 patients from the OA Initiative (OAI) with radiographic OA onset (two males/eight females, average age ± standard deviation: 57.7 ± 9.4 years; initial Kellgren‐Lawrence [KL] grade: 0; final KL grade: 3 over the 10‐year study). Field Strength/Sequence3.0‐T and 14.1‐T, biomechanics‐based displacement‐encoded imaging, fast spin echo, multi‐slice multi‐echoT2mapping. AssessmentWe studied structure and strain in cartilage explants from volunteers receiving total knee replacement, or structure in cartilage of OAI patients with progressive OA. We calculated spatial gradients of quantitative MRI measures (eg, T2) normal to the cartilage surface to enhance zonal variations. We compared gradient values against histologically OA severity, conventional relaxometry, and/or KL grades. Statistical TestsMultiparametric linear regression for evaluation of the relationship between residuals of the mixed effects models and histologically determined OA severity scoring, with a significance threshold atα = 0.05. ResultsGradients of individual relaxometry and biomechanics measures significantly correlated with OA severity, outperforming conventional relaxometry and strain metrics. In human explants, analysis of spatial gradients provided the strongest relationship to OA severity (R2 = 0.627). Spatial gradients of T2 from OAI data identified variations in radiographic (KL Grade 2) OA severity in single subjects, while conventional T2 alone did not. Data ConclusionSpatial gradients of quantitative MRI data may improve the predictive power of noninvasive imaging for early‐stage degeneration. Evidence Level1 Technical EfficacyStage 1 
    more » « less
  4. Abstract Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well‐known insulin‐mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1–10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage‐specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone‐specific genes. This study demonstrates the feasibility of ZnO‐containing composites as a potential scaffold for osteochondral tissue engineering. 
    more » « less
  5. Osteoarthritis (OA), a chronic and degenerative joint disease, remains a challenge in treatment due to the lack of disease-modifying therapies. As a promising therapeutic agent, adipose-derived stem cells (ADSCs) have an effective anti-inflammatory and chondroprotective paracrine effect that can be enhanced by genetic modification. Unfortunately, direct cell delivery without matrix support often results in poor viability of therapeutic cells. Herein, a hydrogel implant approach that enabled intra-articular delivery of gene-engineered ADSCs was developed for improved therapeutic outcomes in a surgically induced rat OA model. An injectable extracellular matrix (ECM)-mimicking hydrogel was prepared as the carrier for cell delivery, providing a favorable microenvironment for ADSC spreading and proliferation. The ECM-mimicking hydrogel could reduce cell death during and post injection. Additionally, ADSCs were genetically modified to overexpress transforming growth factor-β1 (TGF-β1), one of the paracrine factors that exert an anti-inflammatory and pro-anabolic effect. The gene-engineered ADSCs overexpressing TGF-β1 (T-ADSCs) had an enhanced paracrine effect on OA-like chondrocytes, which effectively decreased the expression of tumor necrosis factor-alpha and increased the expression of collagen II and aggrecan. In a surgically induced rat OA model, intra-articular injection of the T-ADSC-loaded hydrogel markedly reduced cartilage degeneration, joint inflammation, and the loss of the subchondral bone. Taken together, this study provides a potential biomaterial strategy for enhanced OA treatment by delivering the gene-engineered ADSCs within an ECM-mimicking hydrogel. 
    more » « less