Abstract Metal–organic frameworks (MOFs) are crystalline, 2‐ and 3‐dimensional coordination polymers formed by bonding interactions between metals and multitopic organic ligands. These are typically formed using hard Lewis basic organic ligands with high oxidation state metal ions. The use of low‐valent metals as structural elements in MOFs is far less common, despite the widespread use of such metals for catalysis, luminescence, and other applications. This Minireview focuses on recent advances in the field of low‐valent MOFs and offers a perspective on the future development of these materials.
more »
« less
Metal–Organic Frameworks with Zero and Low‐Valent Metal Nodes Connected by Tetratopic Phosphine Ligands
Abstract Metal–organic frameworks (MOFs) constructed with M0nodes are attractive targets due to the reactivity of these low‐valent metals, but examples of these MOFs remain exceedingly rare. The rational design of three‐dimensional MOFs with Pd0and Pt0nodes using tetratopic phosphine ligands is reported. Five new MOFs have been synthesized by systematic variation of the phosphine ligands and metal precursors employed, and these represent the first examples of MOFs constructed using phosphine–metal bonds as the sole structural component. The MOFs display solid‐state luminescence, with emission maxima that are significantly red‐shifted compared to Pd(PPh3)4. In addition, a RhIlow‐valent coordination solid based on the same linker design is reported, which displays solid‐state luminescence that is not observed for the molecular analogue.
more »
« less
- Award ID(s):
- 1661655
- PAR ID:
- 10364029
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 61
- Issue:
- 11
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Low‐valent metal–organic frameworks (LVMOFs) and related materials have gained interest due to their potential applications in heterogeneous catalysis. However, of the few LVMOFs that have been reported, none have shown catalytic activity. Herein, a low‐valent metal‐organic material constructed from phosphine linkers and IrInodes is reported. This material is effectively a crystalline, insoluble analogue of Vaska's complex. As such, the material reversibly binds O2and catalyzes the reductive formation of enamines from amides.more » « less
-
We report here the characterization in solution (NMR, luminescence, MS) and the solid-state (X-ray crystallography, IR) of complexes between phenacyldiphenylphosphine oxide and five Ln( iii ) ions (Sm, Eu, Gd, Tb, Dy). Four single crystal X-ray structures are described here showing a 1 : 2 ratio between the Ln 3+ ions Eu, Dy, Sm and Gd and the ligand, where the phosphine oxide ligands are bound in a monodentate manner to the metal center. A fifth structure is reported for the 1 : 2 Eu(NO 3 ) 3 -ligand complex showing bidentate binding between the two ligands and the metal center. The solution coordination chemistry of these metal complexes was probed by 1 H, 13 C and 31 P NMR, mass spectrometry, and luminescence experiments. The title ligand has the capability to sensitize Tb 3+ , Dy 3+ , Eu 3+ and Sm 3+ leading to metal-centered emission in solutions of acetonitrile and methanol and in the solid state.more » « less
-
Functional porous metal–organic frameworks (MOFs) have been explored for a number of potential applications in catalysis, chemical sensing, water capture, gas storage, and separation. MOFs are among the most promising candidates to address challenges facing our society related to energy and environment, but the successful implementation of functional porous MOF materials are contingent on their stability; therefore, the rational design of stable MOFs plays an important role towards the development of functional porous MOFs. In this Focus article, we summarize progress in the rational design and synthesis of stable MOFs with controllable pores and functionalities. The implementation of reticular chemistry allows for the rational top-down design of stable porous MOFs with targeted topological networks and pore structures from the pre-selected building blocks. We highlight the reticular synthesis and applications of stable MOFs: (1) MOFs based on high valent metal ions ( e.g. , Al 3+ , Cr 3+ , Fe 3+ , Ti 4+ and Zr 4+ ) and carboxylate ligands; (2) MOFs based on low valent metal ions ( e.g. , Ni 2+ , Cu 2+ , and Zn 2+ ) and azolate linkers. We envision that the synthetic strategies, including modulated synthesis and post-synthetic modification, can potentially be extended to other more complex systems like metal-phosphonate framework materials.more » « less
-
Abstract Metal‐organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with myriad potential applications in chemical separations, catalysis, and drug delivery. A major barrier to the application of MOFs is their poor scalability, as most frameworks are prepared under highly dilute solvothermal conditions using toxic organic solvents. Herein, we demonstrate that combining a range of linkers with low‐melting metal halide (hydrate) salts leads directly to high‐quality MOFs without added solvent. Frameworks prepared under these ionothermal conditions possess porosities comparable to those prepared under traditional solvothermal conditions. In addition, we report the ionothermal syntheses of two frameworks that cannot be prepared directly under solvothermal conditions. Overall, the user‐friendly method reported herein should be broadly applicable to the discovery and synthesis of stable metal‐organic materials.more » « less
An official website of the United States government
