Herein, we present an integrated upper division chemistry laboratory experiment involving the synthesis, characterization, and evaluation of catalytic metal–organic frameworks (MOFs). Experiments are designed to facilitate the solvothermal synthesis and characterize MOFs, including UiO-66, UiO-66-NH2, and UiO-66-NO2. The MOFs are employed as catalysts in oxidative desulfurization (ODS) of an organic sulfur-containing compound, dibenzothiophene (DBT), in a laboratory experiment. To investigate the composition and structure of the MOFs, powder X-ray diffraction (PXRD) and elemental analysis (EA), respectively, are employed. Using Fourier transform infrared (FT-IR) spectroscopy, students evaluate the different organic linkers found in the MOFs. Students then investigate the effects of the electronic environment of the organic linker of the MOFs on the ODS of DBT. Students find that all three porous and crystalline MOFs oxidize DBT, but UiO-66-NO2 exhibits the most efficient catalytic conversion.
more »
« less
Ionothermal Synthesis of Metal‐Organic Frameworks Using Low‐Melting Metal Salt Precursors**
Abstract Metal‐organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with myriad potential applications in chemical separations, catalysis, and drug delivery. A major barrier to the application of MOFs is their poor scalability, as most frameworks are prepared under highly dilute solvothermal conditions using toxic organic solvents. Herein, we demonstrate that combining a range of linkers with low‐melting metal halide (hydrate) salts leads directly to high‐quality MOFs without added solvent. Frameworks prepared under these ionothermal conditions possess porosities comparable to those prepared under traditional solvothermal conditions. In addition, we report the ionothermal syntheses of two frameworks that cannot be prepared directly under solvothermal conditions. Overall, the user‐friendly method reported herein should be broadly applicable to the discovery and synthesis of stable metal‐organic materials.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10401989
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 17
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metal–organic frameworks bearing coordinatively unsaturated Mg( ii ) sites are promising materials for gas storage, chemical separations, and drug delivery due to their low molecular weights and lack of toxicity. However, there remains a limited number of such MOFs reported in the literature. Herein, we investigate the gas sorption properties of the understudied framework Mg 2 ( m -dobdc) (dobdc 4− = 4,6-dioxido-1,3-benzenedicarboxylate) synthesized under both solvothermal and mechanochemical conditions. Both materials are found to be permanently porous, as confirmed by 77 K N 2 adsorption measurements. In particular, Mg 2 ( m -dobdc) synthesized under mechanochemical conditions using exogenous organic base displays one of the highest capacities reported to date (6.14 mmol g −1 ) for CO 2 capture in a porous solid under simulated coal flue gas conditions (150 mbar, 40 °C). As such, mechanochemically synthesized Mg 2 ( m -dobdc) represents a promising new framework for applications requiring high gas adsorption capacities in a porous solid.more » « less
-
Metal–organic frameworks (MOFs) are crystalline materials that self-assemble from inorganic nodes and organic linkers, and isoreticular chemistry allows for modular and synthetic reagents of various sizes. In this study, a MOF’s components—metal nodes and organic linkers—are constructed in a coarse-grained model from isotropic beads, retaining the basic symmetries of the molecular components. Lennard-Jones and Weeks– Chandler–Andersen pair potentials are used to model attractive and repulsive particle interactions, respectively. We analyze the crystallinity of the self-assembled products and explore the role of modulators—molecules that compete with the organic linkers in binding to the metal nodes, and which we construct analogously—during the selfassembly process of defect-engineered MOFs. Coarse-grained simulation allows for the uncoupling of experimentally interdependent variables to broadly map and determine essential MOF self-assembly conditions, among which are properties of the modulator: binding strength, size (steric hindrance), and concentration. Of these, the simulated modulator’s binding strength has the most pronounced effect on the resulting MOF’s crystal size.more » « less
-
Metal-Organic Frameworks (MOFs) are the subject of intense research focus due to their potential applications in gas storage and separation, biomedicine, energy, and catalysis. Recently, low-valent MOFs (LVMOFs) have been explored for their potential use as heterogeneous catalysts, and multitopic phosphine linkers have been shown as a useful building block for the formation of LVMOFs. However, the synthesis of LVMOFs using phosphine linkers requires conditions that are distinct from the majority of the MOF synthetic literature, including the exclusion of air and water and the use of unconventional modulators and solvents, making it somewhat more challenging to access these materials. This work serves as a general tutorial for the synthesis of LVMOFs with phosphine linkers, including information on: 1) judicious choice of metal precursor, modulator, and solvent; 2) experimental procedures, air-free techniques, and required equipment; 3) proper storage and handling of the resultant LVMOFs; and 4) useful characterization methods for these materials. The intention of this report is to lower the barrier and make more accessible this new subfield of MOF research and facilitate advancements toward novel catalytic materials.more » « less
-
Abstract Metal-organic frameworks (MOFs) exhibit great promise for CO2capture. However, finding the best performing materials poses computational and experimental grand challenges in view of the vast chemical space of potential building blocks. Here, we introduce GHP-MOFassemble, a generative artificial intelligence (AI), high performance framework for the rational and accelerated design of MOFs with high CO2adsorption capacity and synthesizable linkers. GHP-MOFassemble generates novel linkers, assembled with one of three pre-selected metal nodes (Cu paddlewheel, Zn paddlewheel, Zn tetramer) into MOFs in a primitive cubic topology. GHP-MOFassemble screens and validates AI-generated MOFs for uniqueness, synthesizability, structural validity, uses molecular dynamics simulations to study their stability and chemical consistency, and crystal graph neural networks and Grand Canonical Monte Carlo simulations to quantify their CO2adsorption capacities. We present the top six AI-generated MOFs with CO2capacities greater than 2m mol g−1, i.e., higher than 96.9% of structures in the hypothetical MOF dataset.more » « less
An official website of the United States government
