skip to main content


Title: MeqSilhouette v2: spectrally resolved polarimetric synthetic data generation for the event horizon telescope
ABSTRACT

We present MeqSilhouette v2.0 (MeqSv2), a fully polarimetric, time-and frequency-resolved synthetic data generation software for simulating millimetre (mm) wavelength very long baseline interferometry (VLBI) observations with heterogeneous arrays. Synthetic data are a critical component in understanding real observations, testing calibration and imaging algorithms, and predicting performance metrics of existing or proposed sites. MeqSv2 applies physics-based instrumental and atmospheric signal corruptions constrained by empirically derived site and station parameters to the data. The new version is capable of applying instrumental polarization effects and various other spectrally resolved effects using the Radio Interferometry Measurement Equation (RIME) formalism and produces synthetic data compatible with calibration pipelines designed to process real data. We demonstrate the various corruption capabilities of MeqSv2 using different arrays, with a focus on the effect of complex bandpass gains on closure quantities for the EHT at 230 GHz. We validate the frequency-dependent polarization leakage implementation by performing polarization self-calibration of synthetic EHT data using PolSolve. We also note the potential applications for cm-wavelength VLBI array analysis and design and future directions.

 
more » « less
Award ID(s):
2034306 1743747
PAR ID:
10364054
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 490-504
Size(s):
p. 490-504
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays ( SYMBA ), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images. 
    more » « less
  2. Abstract

    The Event Horizon Telescope (EHT) is a millimeter very long baseline interferometry (VLBI) array that has imaged the apparent shadows of the supermassive black holes M87* and Sagittarius A*. Polarimetric data from these observations contain a wealth of information on the black hole and accretion flow properties. In this work, we develop polarimetric geometric modeling methods for mm-VLBI data, focusing on approaches that fit data products with differing degrees of invariance to broad classes of calibration errors. We establish a fitting procedure using a polarimetric “m-ring” model to approximate the image structure near a black hole. By fitting this model to synthetic EHT data from general relativistic magnetohydrodynamic models, we show that the linear and circular polarization structure can be successfully approximated with relatively few model parameters. We then fit this model to EHT observations of M87* taken in 2017. In total intensity and linear polarization, the m-ring fits are consistent with previous results from imaging methods. In circular polarization, the m-ring fits indicate the presence of event-horizon-scale circular polarization structure, with a persistent dipolar asymmetry and orientation across several days. The same structure was recovered independently of observing band, used data products, and model assumptions. Despite this broad agreement, imaging methods do not produce similarly consistent results. Our circular polarization results, which imposed additional assumptions on the source structure, should thus be interpreted with some caution. Polarimetric geometric modeling provides a useful and powerful method to constrain the properties of horizon-scale polarized emission, particularly for sparse arrays like the EHT.

     
    more » « less
  3. Abstract

    Event Horizon Telescope (EHT) images of the horizon-scale emission around the Galactic center supermassive black hole Sagittarius A* (Sgr A*) favor accretion flow models with a jet component. However, this jet has not been conclusively detected. Using the “best-bet” models of Sgr A* from the EHT Collaboration, we assess whether this nondetection is expected for current facilities and explore the prospects of detecting a jet with very-long-baseline interferometry (VLBI) at four frequencies: 86, 115, 230, and 345 GHz. We produce synthetic image reconstructions for current and next-generation VLBI arrays at these frequencies that include the effects of interstellar scattering, optical depth, and time variability. We find that no existing VLBI arrays are expected to detect the jet in these best-bet models, consistent with observations to date. We show that next-generation VLBI arrays at 86 and 115 GHz—in particular, the EHT after upgrades through the ngEHT program and the ngVLA—successfully capture the jet in our tests due to improvements in instrument sensitivity and (u,v) coverage at spatial scales critical to jet detection. These results highlight the potential of enhanced VLBI capabilities in the coming decade to reveal the crucial properties of Sgr A* and its interaction with the Galactic center environment.

     
    more » « less
  4. Abstract

    Very long baseline interferometry (VLBI) provides the highest-resolution images in astronomy. The sharpest resolution is nominally achieved at the highest frequencies, but as the observing frequency increases, so too does the atmospheric contribution to the system noise, degrading the sensitivity of the array and hampering detection. In this paper, we explore the limits of high-frequency VLBI observations usingngehtsim, a new tool for generating realistic synthetic data.ngehtsimuses detailed historical atmospheric models to simulate observing conditions, and it employs heuristic visibility detection criteria that emulate single- and multifrequency VLBI calibration strategies. We demonstrate the fidelity ofngehtsim’spredictions using a comparison with existing 230 GHz data taken by the Event Horizon Telescope (EHT), and we simulate the expected performance of EHT observations at 345 GHz. Though the EHT achieves a nearly 100% detection rate at 230 GHz, our simulations indicate that it should expect substantially poorer performance at 345 GHz; in particular, observations of M87* at 345 GHz are predicted to achieve detection rates of ≲20% that may preclude imaging. Increasing the array sensitivity through wider bandwidths and/or longer integration times—as enabled through, e.g., the simultaneous multifrequency upgrades envisioned for the next-generation EHT—can improve the 345 GHz prospects and yield detection levels that are comparable to those at 230 GHz. M87* and Sgr A* observations carried out in the atmospheric window around 460 GHz could expect to regularly achieve multiple detections on long baselines, but analogous observations at 690 and 875 GHz consistently obtain almost no detections at all.

     
    more » « less
  5. Abstract

    The Event Horizon Telescope (EHT) has imaged two supermassive black holes, Messier 87* (M87*) and Sagittarius A* (Sgr A*), using very-long-baseline interferometry (VLBI). The theoretical analyses of each source suggest magnetically arrested disk (MAD) accretion viewed at modest inclination. These MADs exhibit rotationally symmetric polarization of synchrotron emission caused by symmetries of their ordered magnetic fields. We leverage these symmetries to study the detectability of the black hole photon ring, which imposes known antisymmetries in polarization. In this Letter, we propose a novel observational strategy based on coherent baseline averaging of polarization ratios On a rotating basis to detect the photon ring with 345 GHz VLBI from the Earth’s surface. Using synthetic observations from a likely future EHT, we find a reversal in polarimetric phases on long baselines that reveals the presence of the Sgr A* photon ring in a MAD system at 345 GHz, a critical frequency for lengthening baselines and overcoming interstellar scattering. We use our synthetic data and analysis pipeline to estimate requirements for the EHT using a new metric: SNRPR, the signal-to-noise ratio of this polarimetric reversal signal. We identify long, coherent integrations using frequency phase transfer as a critical enabling technique for the detection of the photon ring and predict a SNRPR∼ 2−3 detection using proposed next-generation Event Horizon Telescope parameters and currently favored models for the Sgr A* accretion flow. We find that higher sensitivity, rather than denser Fourier sampling, is the most critical requirement for polarimetric detection of the photon ring.

     
    more » « less