skip to main content


Title: Enhanced Snow Absorption and Albedo Reduction by Dust‐Snow Internal Mixing: Modeling and Parameterization
Abstract

We extend a stochastic aerosol‐snow albedo model to explicitly simulate dust internally/externally mixed with snow grains of different shapes and for the first time quantify the combined effects of dust‐snow internal mixing and snow nonsphericity on snow optical properties and albedo. Dust‐snow internal/external mixing significantly enhances snow single‐scattering coalbedo and absorption at wavelengths of <1.0 μm, with stronger enhancements for internal mixing (relative to external mixing) and higher dust concentrations but very weak dependence on snow size and shape variabilities. Compared with pure snow, dust‐snow internal mixing reduces snow albedo substantially at wavelengths of <1.0 μm, with stronger reductions for higher dust concentrations, larger snow sizes, and spherical (relative to nonspherical) snow shapes. Compared to internal mixing, dust‐snow external mixing generally shows similar spectral patterns of albedo reductions and effects of snow size and shape. However, relative to external mixing, dust‐snow internal mixing enhances the magnitude of albedo reductions by 10%–30% (10%–230%) at the visible (near‐infrared) band. This relative enhancement is stronger as snow grains become larger or nonspherical, with comparable influences from snow size and shape. Moreover, for dust‐snow external and internal mixing, nonspherical snow grains have up to ~45% weaker albedo reductions than spherical grains, depending on snow size, dust concentration, and wavelength. The interactive effect of dust‐snow mixing state and snow shape highlights the importance of accounting for these two factors concurrently in snow modeling. For application to land/climate models, we develop parameterizations for dust effects on snow optical properties and albedo with high accuracy.

 
more » « less
Award ID(s):
1660587
NSF-PAR ID:
10364066
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
11
Issue:
11
ISSN:
1942-2466
Page Range / eLocation ID:
p. 3755-3776
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Snow, Ice, and Aerosol Radiative (SNICAR) model has been used in various capacities over the last 15 years to model the spectral albedo of snow with light-absorbing constituents (LACs). Recent studies have extended the model to include an adding-doubling two-stream solver and representations of non-spherical ice particles; carbon dioxide snow; snow algae; and new types of mineral dust, volcanic ash, and brown carbon. New options also exist for ice refractive indices and solar-zenith-angle-dependent surface spectral irradiances used to derive broadband albedo. The model spectral range was also extended deeper into the ultraviolet for studies of extraterrestrial and high-altitude cryospheric surfaces. Until now, however, these improvements and capabilities have not been merged into a unified code base. Here, we document the formulation and evaluation of the publicly available SNICAR-ADv3 source code, web-based model, and accompanying library of constituent optical properties. The use of non-spherical ice grains, which scatter less strongly into the forward direction, reduces the simulated albedo perturbations from LACs by ∼9 %–31 %, depending on which of the three available non-spherical shapes are applied. The model compares very well against measurements of snow albedo from seven studies, though key properties affecting snow albedo are not fully constrained with measurements, including ice effective grain size of the top sub-millimeter of the snowpack, mixing state of LACs with respect to ice grains, and site-specific LAC optical properties. The new default ice refractive indices produce extremely high pure snow albedo (>0.99) in the blue and ultraviolet part of the spectrum, with such values only measured in Antarctica so far. More work is needed particularly in the representation of snow algae, including experimental verification of how different pigment expressions and algal cell concentrations affect snow albedo. Representations and measurements of the influence of liquid water on spectral snow albedo are also needed. 
    more » « less
  2. Abstract

    Light‐absorbing particles in atmospheric dust deposited on snow cover (dust‐on‐snow, DOS) diminish albedo and accelerate the timing and rate of snow melt. Identification of these particles and their effects is relevant to snow‐radiation modeling and water‐resource management. Laboratory‐measured reflectance of DOS samples from the San Juan Mountains (USA) were compared with DOS mass loading, particle sizes, iron mineralogy, carbonaceous matter type and content, and chemical compositions. Samples were collected each spring for water years 2011–2016, when individual dust layers had merged into one (all layers merged) at the snow surface. Average reflectance values of the six samples were 0.2153 (sd, 0.0331) across the visible wavelength region (0.4–0.7 μm) and 0.3570 (sd, 0.0498) over the full‐measurement range (0.4–2.50 μm). Reflectance values correlated inversely to concentrations of ferric oxide, organic carbon (1.4–10 wt.%), magnetite (0.05–0.13 wt.%), and silt (PM63‐3.9;median grain sizes averaged 21.4 μm) but lacked correspondence to total iron and PM10contents. Measurements of reflectance and Mössbauer spectra and magnetic properties indicated that microcrystalline hematite and nano‐size goethite were primarily responsible for diminished visible reflectance. Positive correlations between organic carbon and metals attributed to fossil‐fuel combustion, with observations from electron microscopy, indicated that some carbonaceous matter occurred as black carbon. Magnetite was a surrogate for related light‐absorbing minerals, dark rock particles, and contaminants. Similar analyses of DOS from other areas would help evaluate the influences of varied dust sources, wind‐storm patterns, and anthropogenic inputs on snow melt and water resources in and beyond the Colorado River Basin.

     
    more » « less
  3. Abstract

    Aligned interstellar grains produce polarized extinction (observed at wavelengths from the far-ultraviolet to the mid-infrared) and polarized thermal emission (observed at far-infrared and submm wavelengths). The grains must be quite nonspherical, but the actual shapes are unknown. Therelativeefficacy for aligned grains to produce polarization at optical versus infrared wavelengths depends on particle shape. The discrete dipole approximation is used to calculate polarization cross sections for 20 different convex shapes, for wavelengths from 0.1 to 100μm, and grain sizesaefffrom 0.05 to 0.3μm. Spheroids, cylinders, square prisms, and triaxial ellipsoids are considered. Minimum aspect ratios required by the observed starlight polarization are determined. Some shapes can also be ruled out because they provide too little or too much polarization at far-infrared and submm wavelengths. The ratio of 10μm polarization to integrated optical polarization is almost independent of grain shape, varying by only ±8% among the viable convex shapes; thus, at least for convex grains, uncertainties in grain shape cannot account for the discrepancy between predicted and observed 10μm polarization toward Cyg OB2-12.

     
    more » « less
  4. null (Ed.)
    Abstract. Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, vertically resolved measurements of the particle light scattering coefficient (σsp) and light absorption coefficient (σap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80∘ N. Here, relationships among vertically distributed aerosol optical properties (σap, σsp and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4∘ N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with ground-based observations from the observatory at Alert, Nunavut and simulations from the Goddard Earth Observing System (GEOS) model, GEOS-Chem, coupled with the TwO-Moment Aerosol Sectional (TOMAS) model (collectively GEOS-Chem–TOMAS; Kodros et al., 2018) to further our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for σsp less than 15 Mm−1, which represent 98 % of the observed σsp, because the single scattering albedo (SSA) has a tendency to be lower at lower σsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g−1, the average BC mass absorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two averaged modelled MAC values (13.6 and 9.1 m2 g−1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC, the presence of small amounts of dust and/or possible differences in BC microphysics and morphologies between the observations and model. In comparing the observations and simulations, we present σap and SSA, as measured, and σap∕2 and the corresponding SSA to encompass the lower modelled MAC that is more consistent with accepted MAC values. Median values of the measured σap, rBC and the organic component of particles all increase by a factor of 1.8±0.1, going from near-surface to 750 hPa, and values higher than the surface persist to 600 hPa. Modelled BC, organics and σap agree with the near-surface measurements but do not reproduce the higher values observed between 900 and 600 hPa. The differences between modelled and observed optical properties follow the same trend as the differences between the modelled and observed concentrations of the carbonaceous components (black and organic). Model-observation discrepancies may be mostly due to the modelled ejection of biomass burning particles only into the boundary layer at the sources. For the assumption of the observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of σsp<15 Mm−1. The large uncertainties in measuring optical properties and BC, and the large differences between measured and modelled values here and in the literature, argue for improved measurements of BC and light absorption by BC and more vertical profiles of aerosol chemistry, microphysics and other optical properties in the Arctic. 
    more » « less
  5. null (Ed.)
    The size and structure of the dusty circumnuclear torus in active galactic nuclei (AGNs) can be investigated by analyzing the temporal response of the torus's infrared (IR) dust emission to variations in the AGN ultraviolet/optical luminosity. This method, reverberation mapping, is applicable over a wide redshift range, but the IR response is sensitive to several poorly constrained variables relating to the dust distribution and its illumination, complicating the interpretation of measured reverberation lags. We have used an enhanced version of our torus reverberation mapping code (TORMAC) to conduct a comprehensive exploration of the torus response functions at selected wavelengths, for the standard interstellar medium grain composition. The shapes of the response functions vary widely over the parameter range covered by our models, with the largest variations occurring at shorter wavelengths (≤4.5 μm). The reverberation lag, quantified as the response-weighted delay (RWD), is most affected by the radial depth of the torus, the steepness of the radial cloud distribution, the degree of anisotropy of the AGN radiation field, and the volume filling factor. Nevertheless, we find that the RWD provides a reasonably robust estimate, to within a factor of ~3, of the luminosity-weighted torus radius, confirming the basic assumption underlying reverberation mapping. However, overall, the models predict radii at 2.2 μm that are typically a factor of ~2 larger than those derived from K-band reverberation mapping. This is likely an indication that the innermost region of the torus is populated by clouds dominated by large graphite grains. 
    more » « less