Abstract. It is a challenge to obtain accurate measurements of the microphysical properties of delicate, structurally complex, frozen, and semi-frozen hydrometeors. We present a new technique for the real-time measurement of the density of freshly fallen individual snowflakes. A new thermal-imaging instrument, the Differential Emissivity Imaging Disdrometer (DEID), has been shown through laboratory and field experiments to be capable of providing accurate estimates of individual snowflake and bulk snow hydrometeor density (which can be interpreted as the snow-to-liquid ratio or SLR). The method exploits the rate of heat transfer during the melting of a hydrometeor on a heated metal plate, which is a function of the temperature difference between the hotplate surface and the top of the hydrometeor. The product of the melting speed and melting time yields an effective particle thickness normal to the hotplate surface, which can then be used in combination with the particle mass and area on the plate to determine a particle density. Uncertainties in estimates of particle density are approximately 4 % based on calibrations with laboratory-produced particles made from water and frozen solutions of salt and water and field comparisons with both high-resolution imagery of falling snow and traditional snowpack density measurements obtained at 12 h intervals. For 17 storms, individual particle densities vary from 19 to 495 kg m−3, and storm mean snow densities vary from 40 to 100 kg m−3. We observe probability distribution functions for hydrometeor density that are nearly Gaussian with kurtosis of ≈ 3 and skewness of ≈ 0.01.
more »
« less
Snow Particle Analyzer for Simultaneous Measurements of Snow Density and Morphology
Abstract The detailed characterization of snow particles is critical for understanding the snow settling behavior and modeling the ground snow accumulation for various applications such as prevention of avalanches and snowmelt‐caused floods, etc. In this study, we present a snow particle analyzer for simultaneous measurements of various properties of fresh falling snow, including their size, shape, type, and density. The analyzer consists of a digital inline holography module for imaging falling snow particles in a sample volume of 88 cm3and a high‐precision scale to measure the weight of the same particles in a synchronized fashion. The holographic images are processed in real‐time using a machine learning model and post‐processing to determine snow particle size, shape, and type. Such information is used to obtain the estimated volume, which is subsequently correlated with the weight of snow particles to estimate their density. The performance of the analyzer is assessed using monodispersed spherical glass and foam beads, irregular salt crystals, and thin disks with various shapes with known density, which shows <10% density measurement errors. In addition, the analyzer was tested in a number of field deployments under different snow and wind conditions. The system is able to achieve measurements of various snow properties at single particle resolution and statistical robustness. The analyzer was also deployed for 4 hr of operation during a snow event with changing snow and wind conditions, demonstrating its potential for long‐term and real‐time monitoring of the time‐varying snow properties in the field.
more »
« less
- Award ID(s):
- 1822192
- PAR ID:
- 10444462
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 128
- Issue:
- 16
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Light‐absorbing particles in atmospheric dust deposited on snow cover (dust‐on‐snow, DOS) diminish albedo and accelerate the timing and rate of snow melt. Identification of these particles and their effects is relevant to snow‐radiation modeling and water‐resource management. Laboratory‐measured reflectance of DOS samples from the San Juan Mountains (USA) were compared with DOS mass loading, particle sizes, iron mineralogy, carbonaceous matter type and content, and chemical compositions. Samples were collected each spring for water years 2011–2016, when individual dust layers had merged into one (all layers merged) at the snow surface. Average reflectance values of the six samples were 0.2153 (sd, 0.0331) across the visible wavelength region (0.4–0.7 μm) and 0.3570 (sd, 0.0498) over the full‐measurement range (0.4–2.50 μm). Reflectance values correlated inversely to concentrations of ferric oxide, organic carbon (1.4–10 wt.%), magnetite (0.05–0.13 wt.%), and silt (PM63‐3.9;median grain sizes averaged 21.4 μm) but lacked correspondence to total iron and PM10contents. Measurements of reflectance and Mössbauer spectra and magnetic properties indicated that microcrystalline hematite and nano‐size goethite were primarily responsible for diminished visible reflectance. Positive correlations between organic carbon and metals attributed to fossil‐fuel combustion, with observations from electron microscopy, indicated that some carbonaceous matter occurred as black carbon. Magnetite was a surrogate for related light‐absorbing minerals, dark rock particles, and contaminants. Similar analyses of DOS from other areas would help evaluate the influences of varied dust sources, wind‐storm patterns, and anthropogenic inputs on snow melt and water resources in and beyond the Colorado River Basin.more » « less
-
Abstract We extend a stochastic aerosol‐snow albedo model to explicitly simulate dust internally/externally mixed with snow grains of different shapes and for the first time quantify the combined effects of dust‐snow internal mixing and snow nonsphericity on snow optical properties and albedo. Dust‐snow internal/external mixing significantly enhances snow single‐scattering coalbedo and absorption at wavelengths of <1.0 μm, with stronger enhancements for internal mixing (relative to external mixing) and higher dust concentrations but very weak dependence on snow size and shape variabilities. Compared with pure snow, dust‐snow internal mixing reduces snow albedo substantially at wavelengths of <1.0 μm, with stronger reductions for higher dust concentrations, larger snow sizes, and spherical (relative to nonspherical) snow shapes. Compared to internal mixing, dust‐snow external mixing generally shows similar spectral patterns of albedo reductions and effects of snow size and shape. However, relative to external mixing, dust‐snow internal mixing enhances the magnitude of albedo reductions by 10%–30% (10%–230%) at the visible (near‐infrared) band. This relative enhancement is stronger as snow grains become larger or nonspherical, with comparable influences from snow size and shape. Moreover, for dust‐snow external and internal mixing, nonspherical snow grains have up to ~45% weaker albedo reductions than spherical grains, depending on snow size, dust concentration, and wavelength. The interactive effect of dust‐snow mixing state and snow shape highlights the importance of accounting for these two factors concurrently in snow modeling. For application to land/climate models, we develop parameterizations for dust effects on snow optical properties and albedo with high accuracy.more » « less
-
We present a field study of snow settling dynamics based on simultaneous measurements of the atmospheric flow field and snow particle trajectories. Specifically, a super-large-scale particle image velocimetry (SLPIV) system using natural snow particles as tracers is deployed to quantify the velocity field and identify vortex structures in a 22 m $$\times$$ 39 m field of view centred 18 m above the ground. Simultaneously, we track individual snow particles in a 3 m $$\times$$ 5 m sample area within the SLPIV using particle tracking velocimetry. The results reveal the direct linkage among vortex structures in atmospheric turbulence, the spatial distribution of snow particle concentration and their settling dynamics. In particular, with snow turbulence interaction at near-critical Stokes number, the settling velocity enhancement of snow particles is multifold, and larger than what has been observed in previous field studies. Super-large-scale particle image velocimetry measurements show a higher concentration of snow particles preferentially located on the downward side of the vortices identified in the atmospheric flow field. Particle tracking velocimetry, performed on high resolution images around the reconstructed vortices, confirms the latter trend and provides statistical evidence of the acceleration of snow particles, as they move toward the downward side of vortices. Overall, the simultaneous multi-scale particle imaging presented here enables us to directly quantify the salient features of preferential sweeping, supporting it as an underlying mechanism of snow settling enhancement in the atmospheric surface layer.more » « less
-
null (Ed.)The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider three snowfall events under vastly different levels of atmospheric turbulence. We characterize the size and morphology of the snow particles, and we simultaneously image their velocity, acceleration and relative concentration over vertical planes approximately $$30\ \textrm {m}^2$$ in area. We find that turbulence-driven settling enhancement explains otherwise contradictory trends between the particle size and velocity. The estimates of the Stokes number and the correlation between vertical velocity and local concentration are consistent with the view that the enhanced settling is rooted in the preferential sweeping mechanism. When the snow vertical velocity is large compared to the characteristic turbulence velocity, the crossing trajectories effect results in strong accelerations. When the conditions of preferential sweeping are met, the concentration field is highly non-uniform and clustering appears over a wide range of scales. These clusters, identified for the first time in a naturally occurring flow, display the signature features seen in canonical settings: power-law size distribution, fractal-like shape, vertical elongation and large fall speed that increases with the cluster size. These findings demonstrate that the fundamental phenomenology of particle-laden turbulence can be leveraged towards a better predictive understanding of snow precipitation and ground snow accumulation. They also demonstrate how environmental flows can be used to investigate dispersed multiphase flows at Reynolds numbers not accessible in laboratory experiments or numerical simulations.more » « less
An official website of the United States government
