skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrasensitive Molecular Sensors Based on Real‐Time Impedance Spectroscopy in Solution‐Processed 2D Materials
Abstract Chemical sensors based on solution‐processed 2D nanomaterials represent an extremely attractive approach toward scalable and low‐cost devices. Through the implementation of real‐time impedance spectroscopy and development of a three‐element circuit model, redox exfoliated MoS2nanoflakes demonstrate an ultrasensitive empirical detection limit of NO2gas at 1 ppb, with an extrapolated ultimate detection limit approaching 63 ppt. This sensor construct reveals a more than three orders of magnitude improvement from conventional direct current sensing approaches as the traditionally dominant interflake interactions are bypassed in favor of selectively extracting intraflake doping effects. This same approach allows for an all solution‐processed, flexible 2D sensor to be fabricated on a polyimide substrate using a combination of graphene contacts and drop‐casted MoS2nanoflakes, exhibiting similar sensitivity limits. Finally, a thermal annealing strategy is used to explore the tunability of the nanoflake interactions and subsequent circuit model fit, with a demonstrated sensitivity improvement of 2× with thermal annealing at 200 °C.  more » « less
Award ID(s):
2037026 2039268
PAR ID:
10364121
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
32
Issue:
12
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Printed 2D materials, derived from solution‐processed inks, offer scalable and cost‐effective routes to mechanically flexible optoelectronics. With micrometer‐scale control and broad processing latitude, aerosol‐jet printing (AJP) is of particular interest for all‐printed circuits and systems. Here, AJP is utilized to achieve ultrahigh‐responsivity photodetectors consisting of well‐aligned, percolating networks of semiconducting MoS2nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high‐aspect‐ratio (≈1 μm lateral size) MoS2nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high‐boiling‐point solvent terpineol into the MoS2ink is critical for achieving a highly aligned and flat thin‐film morphology following AJP as confirmed by grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi‐ohmic contacts and photoactive channels with responsivities exceeding 103 A W−1that outperform previously reported all‐printed visible‐light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics. 
    more » « less
  2. Abstract 0D organic metal halide hybrids (OMHHs) have recently emerged as a new generation of scintillation materials, due to their high luminescence quantum efficiency, sensitivity, stability, and cost‐effectiveness. While numerous 0D OMHH scintillators have been developed to date, most of them are based on solution grown single crystals that require time‐consuming synthesis and are limited in size. Here, high‐performance X‐ray scintillators based on facile solution processed 0D OMHH amorphous films are reported for the first time. By reacting triphenyl(9‐phenyl‐9H‐carbazol‐3‐yl) phosphonium bromide (TPPcarzBr) with manganese bromide (MnBr2), 0D (TPPcarz)₂MnBr₄ amorphous films can be prepared via solution processing with mild thermal annealing, which exhibits green photoluminescence with an emission maximum ≈517 nm and a photoluminescence quantum efficiency of ≈87%. The X‐ray scintillation of 0D (TPPcarz)₂MnBr₄ amorphous films is characterized to exhibit a light yield of 44600 photon MeV−1and an outstanding linearity with a low limit of detection of 32.42 nGyairs−1over a wide range of X‐ray dose rates. The versatile processability of 0D (TPPcarz)₂MnBr₄ is illustrated with remarkable recyclability, high cost‐effectiveness, and scalability for large‐scale production. By taking advantage of the amorphous nature of newly designed OMHHs, the approach opens up new opportunities for developing high‐performance, solution‐processable scintillators. 
    more » « less
  3. Abstract Crystallographically anisotropic two-dimensional (2D) molybdenum disulfide (MoS 2 ) with vertically aligned (VA) layers is attractive for electrochemical sensing owing to its surface-enriched dangling bonds coupled with extremely large mechanical deformability. In this study, we explored VA-2D MoS 2 layers integrated on cellulose nanofibers (CNFs) for detecting various volatile organic compound gases. Sensor devices employing VA-2D MoS 2 /CNFs exhibited excellent sensitivities for the tested gases of ethanol, methanol, ammonia, and acetone; e.g. a high response rate up to 83.39% for 100 ppm ethanol, significantly outperforming previously reported sensors employing horizontally aligned 2D MoS 2 layers. Furthermore, VA-2D MoS 2 /CNFs were identified to be completely dissolvable in buffer solutions such as phosphate-buffered saline solution and baking soda buffer solution without releasing toxic chemicals. This unusual combination of high sensitivity and excellent biodegradability inherent to VA-2D MoS 2 /CNFs offers unprecedented opportunities for exploring mechanically reconfigurable sensor technologies with bio-compatible transient characteristics. 
    more » « less
  4. Abstract The oxidation mechanism of atomically thin molybdenum disulfide (MoS2) plays a critical role in its nanoelectronics, optoelectronics, and catalytic applications, where devices often operate in an elevated thermal environment. In this study, we systematically investigate the oxidation of mono- and few-layer MoS2flakes in the air at temperatures ranging from 23 °C to 525 °C and relative humidities of 10%–60% by using atomic force microscopy (AFM), Raman spectroscopy and x-ray photoelectron spectroscopy. Our study reveals the formation of a uniform nanometer-thick physical adsorption layer on the surface of MoS2, which is attributed to the adsorption of ambient moisture. This physical adsorption layer acts as a thermal shield of the underlying MoS2lattice to enhance its thermal stability and can be effectively removed by an AFM tip scanning in contact mode or annealing at 400 °C. Our study shows that high-temperature thermal annealing and AFM tip-based cleaning result in chemical adsorption on sulfur vacancies in MoS2, leading to p-type doping. Our study highlights the importance of humidity control in ensuring reliable and optimal performance for MoS2-based electronic and electrochemical devices and provides crucial insights into the surface engineering of MoS2, which are relevant to the study of other two-dimensional transition metal dichalcogenide materials and their applications. 
    more » « less
  5. Abstract Surface acoustic waves (SAWs) propagate along solid-air, solid-liquid, and solid-solid interfaces. Their characteristics depend on the elastic properties of the solid. Combining transmission electron microscopy (TEM) experiments with molecular dynamics (MD) simulations, we probe atomic environments around intrinsic defects that generate SAWs in vertically stacked two-dimensional (2D) bilayers of MoS2. Our joint experimental-simulation study provides insights into SAW-induced structural and dynamical changes and thermomechanical responses of MoS2bilayers. Using MD simulations, we compute mechanical properties from the SAW velocity and thermal conductivity from thermal diffusion of SAWs. The results for Young’s modulus and thermal conductivity of an MoS2monolayer are in good agreement with experiments. The presence of defects, such as nanopores which generate SAWs, reduces the thermal conductivity of 2D-MoS2by an order of magnitude. We also observe dramatic changes in moiré patterns, phonon focusing, and cuspidal structures on 2D-MoS2layers. 
    more » « less