skip to main content


Title: Single-cell Iso-Sequencing enables rapid genome annotation for scRNAseq analysis
Abstract

Single-cell RNA sequencing is a powerful technique that continues to expand across various biological applications. However, incomplete 3′-UTR annotations can impede single-cell analysis resulting in genes that are partially or completely uncounted. Performing single-cell RNA sequencing with incomplete 3′-UTR annotations can hinder the identification of cell identities and gene expression patterns and lead to erroneous biological inferences. We demonstrate that performing single-cell isoform sequencing in tandem with single-cell RNA sequencing can rapidly improve 3′-UTR annotations. Using threespine stickleback fish (Gasterosteus aculeatus), we show that gene models resulting from a minimal embryonic single-cell isoform sequencing dataset retained 26.1% greater single-cell RNA sequencing reads than gene models from Ensembl alone. Furthermore, pooling our single-cell sequencing isoforms with a previously published adult bulk Iso-Seq dataset from stickleback, and merging the annotation with the Ensembl gene models, resulted in a marginal improvement (+0.8%) over the single-cell isoform sequencing only dataset. In addition, isoforms identified by single-cell isoform sequencing included thousands of new splicing variants. The improved gene models obtained using single-cell isoform sequencing led to successful identification of cell types and increased the reads identified of many genes in our single-cell RNA sequencing stickleback dataset. Our work illuminates single-cell isoform sequencing as a cost-effective and efficient mechanism to rapidly annotate genomes for single-cell RNA sequencing.

 
more » « less
Award ID(s):
2015301
NSF-PAR ID:
10364150
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Genetics
Volume:
220
Issue:
3
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alternate isoforms are important contributors to phenotypic diversity across eukaryotes. Although short-read RNA-sequencing has increased our understanding of isoform diversity, it is challenging to accurately detect full-length transcripts, preventing the identification of many alternate isoforms. Long-read sequencing technologies have made it possible to sequence full-length alternative transcripts, accurately characterizing alternative splicing events, alternate transcription start and end sites, and differences in UTR regions. Here, we use Pacific Biosciences (PacBio) long-read RNA-sequencing (Iso-Seq) to examine the transcriptomes of five organs in threespine stickleback fish ( Gasterosteus aculeatus ), a widely used genetic model species. The threespine stickleback fish has a refined genome assembly in which gene annotations are based on short-read RNA sequencing and predictions from coding sequence of other species. This suggests some of the existing annotations may be inaccurate or alternative transcripts may not be fully characterized. Using Iso-Seq we detected thousands of novel isoforms, indicating many isoforms are absent in the current Ensembl gene annotations. In addition, we refined many of the existing annotations within the genome. We noted many improperly positioned transcription start sites that were refined with long-read sequencing. The Iso-Seq-predicted transcription start sites were more accurate and verified through ATAC-seq. We also detected many alternative splicing events between sexes and across organs. We found a substantial number of genes in both somatic and gonadal samples that had sex-specific isoforms. Our study highlights the power of long-read sequencing to study the complexity of transcriptomes, greatly improving genomic resources for the threespine stickleback fish. 
    more » « less
  2. Abstract Background

    The eukaryotic genome is capable of producing multiple isoforms from a gene by alternative polyadenylation (APA) during pre-mRNA processing. APA in the 3′-untranslated region (3′-UTR) of mRNA produces transcripts with shorter or longer 3′-UTR. Often, 3′-UTR serves as a binding platform for microRNAs and RNA-binding proteins, which affect the fate of the mRNA transcript. Thus, 3′-UTR APA is known to modulate translation and provides a mean to regulate gene expression at the post-transcriptional level. Current bioinformatics pipelines have limited capability in profiling 3′-UTR APA events due to incomplete annotations and a low-resolution analyzing power: widely available bioinformatics pipelines do not reference actionable polyadenylation (cleavage) sites but simulate 3′-UTR APA only using RNA-seq read coverage, causing false positive identifications. To overcome these limitations, we developed APA-Scan, a robust program that identifies 3′-UTR APA events and visualizes the RNA-seq short-read coverage with gene annotations.

    Methods

    APA-Scan utilizes either predicted or experimentally validated actionable polyadenylation signals as a reference for polyadenylation sites and calculates the quantity of long and short 3′-UTR transcripts in the RNA-seq data. APA-Scan works in three major steps: (i) calculate the read coverage of the 3′-UTR regions of genes; (ii) identify the potential APA sites and evaluate the significance of the events among two biological conditions; (iii) graphical representation of user specific event with 3′-UTR annotation and read coverage on the 3′-UTR regions. APA-Scan is implemented in Python3. Source code and a comprehensive user’s manual are freely available athttps://github.com/compbiolabucf/APA-Scan.

    Result

    APA-Scan was applied to both simulated and real RNA-seq datasets and compared with two widely used baselines DaPars and APAtrap. In simulation APA-Scan significantly improved the accuracy of 3′-UTR APA identification compared to the other baselines. The performance of APA-Scan was also validated by 3′-end-seq data and qPCR on mouse embryonic fibroblast cells. The experiments confirm that APA-Scan can detect unannotated 3′-UTR APA events and improve genome annotation.

    Conclusion

    APA-Scan is a comprehensive computational pipeline to detect transcriptome-wide 3′-UTR APA events. The pipeline integrates both RNA-seq and 3′-end-seq data information and can efficiently identify the significant events with a high-resolution short reads coverage plots.

     
    more » « less
  3. Abstract Motivation

    High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for quantifying gene expression. Identification of transcript isoforms that are differentially expressed in different conditions, such as in patients and healthy subjects, can provide insights into the molecular basis of diseases. Current transcript quantification approaches, however, do not take advantage of the shared information in the biological replicates, potentially decreasing sensitivity and accuracy.

    Results

    We present a novel hierarchical Bayesian model called Differentially Expressed Isoform detection from Multiple biological replicates (DEIsoM) for identifying differentially expressed (DE) isoforms from multiple biological replicates representing two conditions, e.g. multiple samples from healthy and diseased subjects. DEIsoM first estimates isoform expression within each condition by (1) capturing common patterns from sample replicates while allowing individual differences, and (2) modeling the uncertainty introduced by ambiguous read mapping in each replicate. Specifically, we introduce a Dirichlet prior distribution to capture the common expression pattern of replicates from the same condition, and treat the isoform expression of individual replicates as samples from this distribution. Ambiguous read mapping is modeled as a multinomial distribution, and ambiguous reads are assigned to the most probable isoform in each replicate. Additionally, DEIsoM couples an efficient variational inference and a post-analysis method to improve the accuracy and speed of identification of DE isoforms over alternative methods. Application of DEIsoM to an hepatocellular carcinoma (HCC) dataset identifies biologically relevant DE isoforms. The relevance of these genes/isoforms to HCC are supported by principal component analysis (PCA), read coverage visualization, and the biological literature.

    Availability and implementation

    The software is available at https://github.com/hao-peng/DEIsoM

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract

    The house sparrow (Passer domesticus) is a valuable avian model for studying evolutionary genetics, development, neurobiology, physiology, behavior, and ecology, both in laboratory and field-based settings. The current annotation of the P. domesticus genome available at the Ensembl Rapid Release site is primarily focused on gene set building and lacks functional information. In this study, we present the first comprehensive functional reannotation of the P. domesticus genome using intestinal Illumina RNA sequencing (RNA-Seq) libraries. Our revised annotation provides an expanded view of the genome, encompassing 38592 transcripts compared to the current 23574 transcripts in Ensembl. We also predicted 14717 protein-coding genes, achieving 96.4% completeness for Passeriformes lineage BUSCOs. A substantial improvement in this reannotation is the accurate delineation of untranslated region (UTR) sequences. We identified 82.7% and 93.8% of the transcripts containing 5′- and 3′-UTRs, respectively. These UTR annotations are crucial for understanding post-transcriptional regulatory processes. Our findings underscore the advantages of incorporating additional specific RNA-Seq data into genome annotation, particularly when leveraging fast and efficient data processing capabilities. This functional reannotation enhances our understanding of the P. domesticus genome, providing valuable resources for future investigations in various research fields.

     
    more » « less
  5. Single-cell RNA sequencing (scRNAseq) is rapidly advancing our understanding of cellular composition within complex tissues and organisms. A major limitation in most scRNAseq analysis pipelines is the reliance on manual annotations to determine cell identities, which are time consuming, subjective, and require expertise. Given the surge in cell sequencing, supervised methods–especially deep learning models–have been developed for automatic cell type identification (ACTI), which achieve high accuracy and scalability. However, all existing deep learning frameworks for ACTI lack interpretability and are used as “black-box” models. We present N-ACT (Neural-Attention for Cell Type identification): the first-of-its-kind interpretable deep neural network for ACTI utilizing neural attention to detect salient genes for use in cell-types identification. We compare N-ACT to conventional annotation methods on two previously manually annotated data sets, demonstrating that N-ACT accurately identifies marker genes and cell types in an unsupervised manner, while performing comparably on multiple data sets to current state-of-the-art model in traditional supervised ACTI. 
    more » « less