skip to main content


Title: Tandem Living Insertion and Controlled Radical Polymerization for Polyolefin–Polyvinyl Block Copolymers
Abstract

Practical synthesis of polyolefin–polyvinyl block copolymers remains a challenge for transition‐metal catalyzed polymerizations. Common approaches functionalize polyolefins for post‐radical polymerization via insertion methods, yet sacrifice the livingness of the olefin polymerization. This work identifies an orthogonal radical/spin coupling technique which affords tandem living insertion and controlled radical polymerization. The broad tolerance of this coupling technique has been demonstrated for diverse radical/spin traps such as 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide (TIPNO), 1‐oxyl‐(2,2,6,6‐tetramethylpiperidine) ‐4‐yl‐α‐bromoisobutyrate (TEMPO‐Br), andN‐tert‐butyl‐α‐phenylnitrone (PBN). Subsequent controlled radical polymerization is demonstrated with nitroxide‐mediated polymerization (NMP) and atom transfer radical polymerization (ATRP), yielding polyolefin–polyvinyl di‐ and triblock copolymers (Đ<1.3) with acrylic, vinylic and styrenic segments. These findings highlight radical trapping as an approach to expand the scope of polyolefin‐functionalization techniques to access polyolefin macroinitiators.

 
more » « less
NSF-PAR ID:
10364167
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
134
Issue:
10
ISSN:
0044-8249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Practical synthesis of polyolefin–polyvinyl block copolymers remains a challenge for transition‐metal catalyzed polymerizations. Common approaches functionalize polyolefins for post‐radical polymerization via insertion methods, yet sacrifice the livingness of the olefin polymerization. This work identifies an orthogonal radical/spin coupling technique which affords tandem living insertion and controlled radical polymerization. The broad tolerance of this coupling technique has been demonstrated for diverse radical/spin traps such as 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide (TIPNO), 1‐oxyl‐(2,2,6,6‐tetramethylpiperidine) ‐4‐yl‐α‐bromoisobutyrate (TEMPO‐Br), andN‐tert‐butyl‐α‐phenylnitrone (PBN). Subsequent controlled radical polymerization is demonstrated with nitroxide‐mediated polymerization (NMP) and atom transfer radical polymerization (ATRP), yielding polyolefin–polyvinyl di‐ and triblock copolymers (Đ<1.3) with acrylic, vinylic and styrenic segments. These findings highlight radical trapping as an approach to expand the scope of polyolefin‐functionalization techniques to access polyolefin macroinitiators.

     
    more » « less
  2. Abstract

    This work develops the Polyolefin Active‐Ester Exchange (PACE) process to afford well‐defined polyolefin–polyvinyl block copolymers. α‐Diimine PdII‐catalyzed olefin polymerizations were investigated through in‐depth kinetic studies in comparison to an analog to establish the critical design that facilitates catalyst activation. Simple transformations lead to a diversity of functional groups forming polyolefin macroinitiators or macro‐mediators for various subsequent controlled polymerization techniques. Preparation of block copolymers with different architectures, molecular weights, and compositions was demonstrated with ring‐opening polymerization (ROP), nitroxide‐mediated polymerization (NMP), and photoiniferter reversible addition–fragmentation chain transfer (PI‐RAFT). The significant difference in the properties of polyolefin–polyacrylamide block copolymers was harnessed to carry out polymerization‐induced self‐assembly (PISA) and study the nanostructure behaviors.

     
    more » « less
  3. Abstract

    This work develops the Polyolefin Active‐Ester Exchange (PACE) process to afford well‐defined polyolefin–polyvinyl block copolymers. α‐Diimine PdII‐catalyzed olefin polymerizations were investigated through in‐depth kinetic studies in comparison to an analog to establish the critical design that facilitates catalyst activation. Simple transformations lead to a diversity of functional groups forming polyolefin macroinitiators or macro‐mediators for various subsequent controlled polymerization techniques. Preparation of block copolymers with different architectures, molecular weights, and compositions was demonstrated with ring‐opening polymerization (ROP), nitroxide‐mediated polymerization (NMP), and photoiniferter reversible addition–fragmentation chain transfer (PI‐RAFT). The significant difference in the properties of polyolefin–polyacrylamide block copolymers was harnessed to carry out polymerization‐induced self‐assembly (PISA) and study the nanostructure behaviors.

     
    more » « less
  4. Synthesizing polystyrene-block-poly(vinyl alcohol) (PS-b-PVA) via controlled radical polymerization of vinyl acetate, the traditional precursor to polyvinyl alcohol (PVA), is challenging due to the reactivity of the unconjugated α-acetoxy radical. We report the synthesis and characterization of PS-b-PVA block copolymers (BCPs) with tailorable PVA block lengths via RAFT polymerization of an alternative precursor, an aromatic organoborane comonomer BN 2-vinylnapthalene (BN2VN). RAFT homopolymerization of BN2VN (RB) using 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT) is described. Solid-state NMR, ATR-IR, SEC and thermogravimetric analysis reveal significant differences between PS-b-PVA and RS-b-RB. The fate of the trithiocarbonate end-group during oxidative conversion of the C–B side chain to a C–OH side chain was studied; while a hydrated aldehyde (e.g., gem-diol) was hypothesized, conclusive evidence was not found. 
    more » « less
  5. Abstract

    RecentlyO‐carboxyanhydrides (OCAs) have emerged as a class of viable monomers which can undergo ring‐opening polymerization (ROP) to prepare poly(α‐hydroxyalkanoic acid) with functional groups that are typically difficult to achieve by ROP of lactones. Organocatalysts for the ROP of OCAs, such as dimethylaminopyridine (DMAP), may induce undesired epimerization of the α‐carbon atom in polyesters resulting in the loss of isotacticity. Herein, we report the use of (BDI‐IE)Zn(OCH(CH3)COOCH3) ((BDI)Zn‐1, (BDI‐IE)=2‐((2,6‐diethylphenyl)amino)‐4‐((2,6‐diisopropylphenyl)imino)‐2‐pentene), for the controlled ROP of various OCAs without epimerization. Both homopolymers and block copolymers with controlled molecular weights, narrow molecular weight distributions, and isotactic backbones can be readily synthesized. (BDI)Zn‐1 also enables controlled copolymerization of OCAs and lactide, facilitating the synthesis of block copolymers potentially useful for various biomedical applications. Preliminary mechanistic studies suggest that the monomer/dimer equilibrium of the zinc catalyst influences the ROP of OCAs, with the monomeric (BDI)Zn‐1 possessing superior catalytic activity for the initiation of ROP in comparison to the dimeric (BDI)Zn complex.

     
    more » « less