skip to main content


Title: The SAMI Galaxy Survey: the difference between ionized gas and stellar velocity dispersions
ABSTRACT

We investigate the mean locally measured velocity dispersions of ionized gas (σgas) and stars (σ*) for 1090 galaxies with stellar masses $\log \, (M_{\!\ast }/M_{\odot }) \ge 9.5$ from the SAMI Galaxy Survey. For star-forming galaxies, σ* tends to be larger than σgas, suggesting that stars are in general dynamically hotter than the ionized gas (asymmetric drift). The difference between σgas and σ* (Δσ) correlates with various galaxy properties. We establish that the strongest correlation of Δσ is with beam smearing, which inflates σgas more than σ*, introducing a dependence of Δσ on both the effective radius relative to the point spread function and velocity gradients. The second strongest correlation is with the contribution of active galactic nuclei (AGN) (or evolved stars) to the ionized gas emission, implying that the gas velocity dispersion is strongly affected by the power source. In contrast, using the velocity dispersion measured from integrated spectra (σap) results in less correlation between the aperture-based Δσ (Δσap) and the power source. This suggests that the AGN (or old stars) dynamically heat the gas without causing significant deviations from dynamical equilibrium. Although the variation of Δσap is much smaller than that of Δσ, a correlation between Δσap and gas velocity gradient is still detected, implying that there is a small bias in dynamical masses derived from stellar and ionized gas velocity dispersions.

 
more » « less
Award ID(s):
2009416
NSF-PAR ID:
10364207
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1765-1780
Size(s):
["p. 1765-1780"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this work, we publish stellar velocity dispersions, sizes, and dynamical masses for eight ultramassive galaxies (UMGs;log(M*/M)> 11),z≳ 3) from the Massive Ancient Galaxies Atz> 3 NEar-infrared (MAGAZ3NE) Survey, more than doubling the number of such galaxies with velocity dispersion measurements at this epoch. Using the deep Keck/MOSFIRE and Keck/NIRES spectroscopy of these objects in theHandKbandpasses, we obtain large velocity dispersions of ∼400 km s−1for most of the objects, which are some of the highest stellar velocity dispersions measured and ∼40% larger than those measured for galaxies of similar mass atz∼ 1.7. The sizes of these objects are also smaller by a factor of 1.5–3 compared to this samez∼ 1.7 sample. We combine these large velocity dispersions and small sizes to obtain dynamical masses. The dynamical masses are similar to the stellar masses of these galaxies, consistent with a Chabrier initial mass function (IMF). Considered alongside previous studies of massive quiescent galaxies across 0.2 <z< 4.0, there is evidence for an evolution in the relation between the dynamical mass–stellar mass ratio and velocity dispersion as a function of redshift. This implies an IMF with fewer low-mass stars (e.g., Chabrier IMF) for massive quiescent galaxies at higher redshifts in conflict with the bottom-heavy IMF (e.g., Salpeter IMF) found in their likelyz∼ 0 descendants, though a number of alternative explanations such as a different dynamical structure or significant rotation are not ruled out. Similar to data at lower redshifts, we see evidence for an increase of IMF normalization with velocity dispersion, though thez≳ 3 trend is steeper than that forz∼ 0.2 early-type galaxies and offset to lower dynamical-to-stellar mass ratios.

     
    more » « less
  2. We use the statistical power of the MaNGA integral-field spectroscopic galaxy survey to improve the definition of strong line diagnostic boundaries used to classify gas ionization properties in galaxies. We detect line emission from 3.6 million spaxels distributed across 7400 individual galaxies spanning a wide range of stellar masses, star formation rates, and morphological types, and find that the gas-phase velocity dispersion σHα correlates strongly with traditional optical emission-line ratios such as [S II]/Hα, [N II]/Hα, [O I]/Hα, and [O III]/Hβ. Spaxels whose line ratios are most consistent with ionization by galactic H II regions exhibit a narrow range of dynamically cold line-of-sight velocity distributions (LOSVDs) peaked around 25 km s-1 corresponding to a galactic thin disk, while those consistent with ionization by active galactic nuclei (AGNs) and low-ionization emission-line regions (LI(N)ERs) have significantly broader LOSVDs extending to 200 km s-1. Star-forming, AGN, and LI(N)ER regions are additionally well separated from each other in terms of their stellar velocity dispersion, stellar population age, Hα equivalent width, and typical radius within a given galaxy. We use our observations to revise the traditional emission-line diagnostic classifications so that they reliably identify distinct dynamical samples both in two-dimensional representations of the diagnostic line ratio space and in a multidimensional space that accounts for the complex folding of the star-forming model surface. By comparing the MaNGA observations to the SDSS single-fiber galaxy sample, we note that the latter is systematically biased against young, low-metallicity star-forming regions that lie outside of the 3″ fiber footprint. 
    more » « less
  3. ABSTRACT

    We present an empirical relation between the cold gas surface density (Σgas) and the optical extinction (AV) in a sample of 103 galaxies from the Extragalactic Database for Galaxy Evolution (EDGE) survey. This survey provides CARMA interferometric CO observations for 126 galaxies included in the Calar Alto Legacy Integral Field Area (CALIFA) survey. The matched, spatially resolved nature of these data sets allows us to derive the Σgas–AV relation on global, radial, and kpc (spaxel) scales. We determine AV from the Balmer decrement (H α/H β). We find that the best fit for this relation is $\Sigma _{\rm gas}\,(\rm {M_\odot \,pc}^{-2}) \sim 26 \times {\rm \mathit{ A}_\mathit{ V}} \,(\rm mag)$, and that it does not depend on the spatial scale used for the fit. However, the scatter in the fits increases as we probe smaller spatial scales, reflecting the complex relative spatial distributions of stars, gas, and dust. We investigate the Σgas/AV ratio on radial and spaxel scales as a function of $\mathrm{EW(H\,\alpha)}$. We find that at larger values of $\mathrm{EW({H\,\alpha })}$ (i.e. actively star-forming regions) this ratio tends to converge to twice the value expected for a foreground dust screen geometry (∼30 $\mathrm{M_{\odot } \, pc^{-2} \, mag^{-1}}$). On radial scales, we do not find a significant relation between the Σgas/AV ratio and the ionized gas metallicity. We contrast our estimates of Σgas using AV with compilations in the literature of the gas fraction on global and radial scales as well as with well-known scaling relations such as the radial star formation law and the Σgas–Σ* relation. These tests show that optical extinction is a reliable proxy for estimating Σgas in the absence of direct sub/millimeter observations of the cold gas.

     
    more » « less
  4. Abstract

    The Sloan Digital Sky Survey MaNGA program has now obtained integral field spectroscopy for over 10,000 galaxies in the nearby universe. We use the final MaNGA data release DR17 to study the correlation between ionized gas velocity dispersion and galactic star formation rate, finding a tight correlation in whichσHαfrom galactic Hiiregions increases significantly from ∼18–30 km s−1, broadly in keeping with previous studies. In contrast,σHαfrom diffuse ionized gas increases more rapidly from 20–60 km s−1. Using the statistical power of MaNGA, we investigate these correlations in greater detail using multiple emission lines and determine that the observed correlation ofσHαwith local star formation rate surface density is driven primarily by the global relation of increasing velocity dispersion at higher total star formation rate, as are apparent correlations with stellar mass. Assuming Hiiregion models consistent with our finding thatσ[OIII]<σHα<σ[O I], we estimate the velocity dispersion of the molecular gas in which the individual Hiiregions are embedded, finding valuesσMol= 5–30 km s−1consistent with ALMA observations in a similar mass range. Finally, we use variations in the relation with inclination and disk azimuthal angle to constrain the velocity dispersion ellipsoid of the ionized gasσz/σr= 0.84 ± 0.03 andσϕ/σr= 0.91 ± 0.03, similar to that of young stars in the Galactic disk. Our results are most consistent with the theoretical models in which turbulence in modern galactic disks is driven primarily by star formation feedback.

     
    more » « less
  5. ABSTRACT We explore the isothermal total density profiles of early-type galaxies (ETGs) in the IllustrisTNG simulation. For the selected 559 ETGs at z = 0 with stellar masses $10^{10.7}\, \mathrm{M}_{\odot } \leqslant M_{\ast } \leqslant 10^{11.9}\, \mathrm{M}_{\odot }$, the total power-law slope has a mean of 〈γ′〉 = 2.011 ± 0.007 and a scatter of $\sigma _{\gamma ^{\prime }} = 0.171$ over the radial range 0.4–4 times the stellar half-mass radius. Several correlations between γ′ and galactic properties including stellar mass, effective radius, stellar surface density, central velocity dispersion, central dark matter fraction, and in situ-formed stellar mass ratio are compared to observations and other simulations, revealing that IllustrisTNG reproduces many correlation trends, and in particular, γ′ is almost constant with redshift below z = 2. Through analysing IllustrisTNG model variations, we show that black hole kinetic winds are crucial to lowering γ′ and matching observed galaxy correlations. The effects of stellar winds on γ′ are subdominant compared to active galactic nucleus (AGN) feedback, and differ due to the presence of AGN feedback from previous works. The density profiles of the ETG dark matter haloes are well described by steeper than NFW profiles, and they are steeper in the full physics (FP) run than their counterparts in the dark matter-only (DMO) run. Their inner density slopes anticorrelate (remain constant) with the halo mass in the FP (DMO) run, and anticorrelate with the halo concentration parameter c200 in both the types of runs. The dark matter haloes of low-mass ETGs are contracted whereas high-mass ETGs are expanded, suggesting that variations in the total density profile occur through the different halo responses to baryons. 
    more » « less